正弦定理引入.C.B.A引例:为了测定河岸A点到对岸C点的距离,在岸边选定1公里长的基线AB,并测得∠ABC=120o,∠BAC=45o,如何求A、C两点的距离?ABC3C2C1CBC的长度与角A的大小有关吗?三角形中角A与它的对边BC的长度是否存在定量关系?在Rt△ABC中,各角与其对边的关系:caAsincbBsin1sinC不难得到:CcBbAasinsinsinCBAabccc在非直角三角形ABC中有这样的关系吗?AcbaCB(1)若直角三角形,已证得结论成立.bADcADCBsin,sin所以AD=csinB=bsinC,即,sinsinCcBb同理可得,sinsinCcAaCcBbAasinsinsin即:DAcbCB图1过点A作AD⊥BC于D,此时有证法1:(2)若三角形是锐角三角形,如图1,由(1)(2)(3)知,结论成立.CCbADsinsin)(且CcBbAasinsinsin仿(2)可得D(3)若三角形是钝角三角形,且角C是钝角如图2,此时也有cADBsin交BC延长线于D,过点A作AD⊥BC,CAcbB图2证明:∵BacAbcCabSABCsin21sin21sin21BACDabcaABCahS21而CbBcADhasinsin∴CabBacSABCsin21sin21同理∴BacAbcCabSABCsin21sin21sin21haAbcSABCsin21证法2:向量法证法3:利用向量的数量积,产生边的长与内角的三角函数的关系来证明.jBACabc在锐角三角形中.的夹角为与,的夹角为与,的夹角为与ABjCBjACjC90A9090由向量加法的三角形法则ABCBACABjCBjACjABjCBACjj得的数量积两边同取与,)90cos()90cos(90cosAABjCCBjACj定义)(根据向量的数量积的CcAaAcCasinsinsinsin即在锐角三角形中,可得垂直于点作过同理,sinsin,BbCcCBjCCcBbAasinsinsin也有jBACabc,于垂直作单位向量证明:过点ACjA正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.CcBbAasinsinsin即AasinBbsinCcsin==(2R为△ABC外接圆直径)=2R思考求证:证明:OC/cbaCBARCcRcCCCCCBA2sin2sinsin,90''RCcBbAaRBbRAa2sinsinsin2sin,2sin同理作外接圆O,过B作直径BC/,连AC/,剖析定理、加深理解正弦定理可以解决三角形中哪类问题:①已知两角和一边,求其他角和边.②已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角.CcBbAasinsinsin例1在△ABC中,A=32.0º,B=81.5º,a=42.9,解此三角形.(精确到0.1cm)解:根据三角形的内角和定理:C=180º-(A+B)=66.2º由正弦定理可得由正弦定理可得sin42.9sin81.880.1sinsin32.0aBbcmAsin42.9sin66.274.1sinsin32.0acccmA定理应用已知两角和任意边,求其他两边和一角课堂小结(1)三角形常用公式:(2)正弦定理应用范围:①已知两角和任意边,求其他两边和一角②已知两边和其中一边的对角,求另一边的对角。(注意解的情况)正弦定理:ABC111sinsinsin222ABCSabCbcAacBsinsinsinabcABC=2R