七年级数学下学期压轴题(能做好这些题,说明你学的很棒,来,挑战一下自己)姓名1.CD经过BCA顶点C的一条直线,CACB.EF,分别是直线CD上两点,且BECCFA.(1)若直线CD经过BCA的内部,且EF,在射线CD上,请解决下面的问题:①如图1,若90BCA,90,则BECF;EF|BE-AF|(填“”,“”或“”);②如图2,将(1)中的已知条件改成∠BCA=60°,∠=120°,其它条件不变,(1)中的结论__________。(填“成立”、“不成立”)③若0180BCA,请添加一个关于与BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过BCA的外部,BCA,请提出EFBEAF,,三条线段数量关系的合理猜想(不要求证明)____________________.2.如图,△ABC中,∠A=40o,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部的A处时,求∠1+∠2的度数,并说明理由。ABCEFDDABCEFADFCEB(图1)(图2)(图3)AEDCBA213.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号:.4.已知:如图①,现有a×a,b×b的正方形纸片和a×b的长方形纸片各若干块.(1)图②是用这些纸片拼成的一个长方形,(每两个纸片之间既不重叠,也无空隙),利用这个长方形的面积,写出一个代数恒等式______________________;(2)试选用图①中的纸片(每种纸片至少用一次)在下面的方框中拼成与图②不同的一个长方形,(拼出的图中必须保留拼图的痕迹),标出此长方形的长和宽,并利用拼成的长方形面积写出一个代数恒等式.5.如图3,在△ABC中,两条角平分线BD和CE相交于点O,若∠BOC=118°,那么∠A的度数是.6.如图4,∠ACB=∠DFE,BC=EF,那么需要补充一个条件,(写出一个即可),才能使得△ABC≌△DEF.7、(1)如图5-1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图5-2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达).8、图10-1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图7的形状拼成一个正方形.(1)你认为图10-2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图6中阴影部分的面积.(3)观察图10-2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.22.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式()EDFBAC图4图3aabb图5-1图5-2OACPP′B(第5题图)图10-1图10-2abb甲乙A.222()ababB.222()2abaabbC.222()2abaabbD.22()()ababab9、若a+b=7,ab=5,则(a-b)2=.10、、数学课上,老师让同学们按要求折叠长方形纸片.第一步:先将长方形的四个顶点标上字母A,B,C,D(如图12);第二步:折叠纸片,使AB与CD重合,折出纸痕MN,然后打开铺平;第三步:过点D折叠纸片,使A点落在折痕MN上的A’处,折痕是DL.这时,老师说:“A’L的长度一定等于LD的一半.”同学们经过测量果然如此.为了解开其中的奥秘,老师设置了几个思考题,请同学们完成:(1)△ALD与△A’LD关于LD对称吗?(2)AD=A’D吗?∠ADL=∠A’DL吗?∠LA’D是直角吗?(3)连接AA’,△A’AN与△A’DN对称吗?(4)A’A=A’D吗?△A’AD是什么三角形?(5)请你完整地说明A’L=21LD的理由.11、.如图2,在等边△ABC中,取BD=CE=AF,且D,E,F非所在边中点,由图中找出3个全等三角形组成一组,这样的全等三角形的组数有().A.2B.3C.4D.512.若227()38x,则x=.13.如图11,已知在Rt△ABC中,∠A=90°,BD是∠B的平分线,DE是BC的垂直平分线.求∠C的度数。14、.如图12-1,点O是线段AD上的一点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.(1)求∠AEB的大小;(2)如图12-2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.BCMDAA′L图12NBADCE图11AODCBEG图12-1CDOABEG图12-215.如图,在△ABC中,BC=AC,∠C=90°,AD平分∠CAB,AB=10cm,DE⊥AB,垂足为点E.那么△BDE的周长是____________cm.16.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依次类推,则第6个图中共有三角形个.……18.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°19、下面是用若干棋子组成的几个图案,按照这样的方式继续下去,当摆第n个这样的图案需要个棋子。20.下列图案是用长度相等的火柴按一定规律构成的图形,依此规律第6个图形中,共用火柴的根数是.21.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴若∠B=35°,∠ACB=85°,求∠E的度数;⑵当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.写出结论需证明.AA1C1B1BCA2B2C2AA1C1B1BCABC图1图2图3PDCBA…图①图②图③图④PEDCBA23.如图1,△ABC的边BC直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.24.已知543zyx,且10254zyx,则zyx52的值等于________.25.如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠.(1)如图1,若∠BCA=90°,∠=90°,问EF=BE-AF,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA=60°,∠=120°(如图2),问EF=BE-AF仍成立吗?说明理由.(3)若0°∠BCA90°,请你添加一个关于∠与∠BCA关系的条件,使结论EF=BE-AF仍然成立.你添加的条件是.(直接写出结论)图①DAECBFl图②ABEFClD26、已知一个等腰三角形的三边长分别为x、2x、5x-3,求这个三角形的周长.27.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=400,∠B=360,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)28.如图①,直线l过正方形ABCD的顶点B,A、C两顶点在直线l同侧,过点A、C分别作AE⊥直线l、CF⊥直线l.(1)试说明:EF=AE+CF;(2)如图②,当A、C两顶点在直线l两侧时,其它条件不变,猜想EF、AE、CF满足什么数量关系(直接写出答案,不必说明理由).得分29.如图,△ABC和△ADC都是每边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由.(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.(4)若点E、F在射线BA、射线AD上继续运动下去,(1)小题中的结论还成立吗?(直接写出结论,不必说明理由)30、(本小题13分)操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由.探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.(1)BE与AD是否相等?为什么?(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由。(3)∠DBC与∠DCB相等吗?试说明理由.AEBCDFABCABCABCD图(1)图(2)图(3)图(5)CABDEABC图(4)图3图2图1EFEPCBAABCABCPP31、P点是ABC和外角ACE的角平分线的交点,如图3,若P点是外角CBF和BCE的角平分线的交点.分别指出每个图中∠BPC和∠A的关系,并选择其中一个加以证明.32.如图,△ABC中,AB=AC,∠BAC=90°.(1)过点A任意一条直线l(l不与BC相交),并作BD⊥l,CE⊥l,垂足分别为D、E.度量BD、CE、DE,你发现它们之间有什么关系?试对这种关系说明理由;(2)过点A任意作一条直线l(l与BC相交),并作BD⊥l,CE⊥l,垂足分别为D、E.度量BD、CE、DE,你发现经们之间有什么关系?试对这种关系说明理由.33、操作与探究如图,已知△ABC,(1)画出∠B、∠C的平分线,交于点O;(2)过点O画EF∥BC,交AB于点E,AC于点F;(3)写出可用图中字母表示的相等的角,并说明理由;(4)若∠ABC=80°,∠ACB=60°,求∠A,∠BOC的度数;又若∠ABC=70°,∠ACB=50°,求∠A,∠BOC的度数;(5)根据(4)的解答,请你猜出∠BOC与∠A度数的大小关系这个结论对任意一个三角形都成立吗?为什么?34.如图为由边长为1的正方形组成的矩形,△ABC的顶点落在小正方形的顶点上。(1)求△ABC的面积。(2)你能在图中找到顶点落在小正方形的顶点上且与△ABC全等的三角形(除△ABC外)共个35.已知正方形的四条边都相等,四个角都是90º。如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上。(1)如图1,连结DF、BF,说明:DF=BF;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条长度与线段DG的长始终相等的线段?并以图2为例说明理由。CBAAEB图1DCGFABDCGFE图236.如图,在ABC中,40,2BACA