2019届二轮复习-----空间几何体的表面积与体积--课件(40张)(全国通用)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第2节空间几何体的表面积与体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.知识梳理2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=_______S圆锥侧=_____S圆台侧=__________2πrlπrlπ(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=_____锥体(棱锥和圆锥)S表面积=S侧+S底V=________台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=______V=________S底h13S底h4πR243πR3[常用结论与微点提醒]1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球与内切球的半径之比为3∶1.1.思考辨析(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)球的体积之比等于半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()诊断自测解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√解析由题意,得S表=πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm).答案B2.(必修2P27练习1改编)已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1cmB.2cmC.3cmD.32cm答案A3.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323πC.8πD.4π解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3a,即R=3.所以球的表面积S=4πR2=12π.4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=12.答案B∴底面圆半径r=OA2-OM2=32,故圆柱体积V=π·r2·h=π·322×1=3π4.5.(2018·天津河西区质检)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.解析根据三视图可知该四棱锥的底面是底边长为2m,高为1m的平行四边形,四棱锥的高为3m.答案2故该四棱锥的体积V=13×2×1×3=2(m3).考点一空间几何体的表面积【例1】(1)(2016·全国Ⅱ卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π(2)(2017·全国Ⅰ卷)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16解析(1)几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h.由三视图知r=2,c=2πr=4π,h=4.故该几何体的表面积S表=所以l=22+(23)2=4.πr2+ch+12cl=4π+16π+8π=28π.答案(1)C(2)B(2)由三视图可画出直观图,该直观图各面内只有两个相同的梯形的面,S梯=12×(2+4)×2=6,S全梯=6×2=12.规律方法1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小.(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+22B.11+22C.14+22D.15A.17πB.18πC.20πD.28π(2)(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()解析(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+22.(2)由题知,该几何体的直观图如图所示,它是一个球(被过球心O且互相垂直的三个平面)切掉18球所剩的组合体,答案(1)B(2)A其表面积是球面面积的78和三个14圆面积.设球的半径为R,则78×43πR3=28π3,R=2.故几何体的表面积S=78×4πR2+34πR2=17π.考点二空间几何体的体积【例2】(1)如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A-B1DC1的体积为()A.3B.32C.1D.32(2)(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.13+23πB.13+23πC.13+26πD.1+26π又∵平面BB1C1C⊥平面ABC,AD⊥BC,AD⊂平面ABC,由面面垂直的性质定理可得AD⊥平面BB1C1C,即AD为三棱锥A-B1DC1的底面B1DC1上的高,∴VA-B1DC1=13S△B1DC1·AD=13×12×2×3×3=1.解析(1)如题图,在正△ABC中,D为BC中点,则有AD=32AB=3,答案(1)C(2)C(2)由三视图知该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×223=13+26π.规律方法1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【训练2】(1)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2B.92C.32D.3(2)(2018·郑州质检)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.(2)由题可知,∵三棱锥每个面都是腰为2的等腰三角形,由正视图可得如右俯视图,且三棱锥高为h=1,则体积V=13Sh=13×12×23×1×1=33.答案(1)D(2)33解析(1)由三视图知,该几何体是四棱锥,底面是直角梯形,且S底=12(1+2)×2=3.∴V=13x·3=3,解得x=3.考点三多面体与球的切、接问题(典例迁移)【例3】(经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6πD.32π3解析由AB⊥BC,AB=6,BC=8,得AC=10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.2r=4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.则12×6×8=12×(6+8+10)·r,所以r=2.由2R=3,即R=32.故球的最大体积V=43πR3=92π.答案B【迁移探究】若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.解将直三棱柱补形为长方体ABEC-A1B1E1C1,则球O是长方体ABEC-A1B1E1C1的外接球.∴体对角线BC1的长为球O的直径.故S球=4πR2=169π.因此2R=32+42+122=13.规律方法1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练3】(1)(2017·全国Ⅰ卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9.则球O的表面积为________.(2)(2018·佛山一中月考)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π解析(1)如图,连接OA,OB,因为SA=AC,SB=BC,所以OA⊥SC,OB⊥SC.因为平面SAC⊥平面SBC,平面SAC∩平面SBC=SC,且OA⊂平面SAC,所以OA⊥平面SBC.设球O的半径为r,则OA=OB=r,SC=2r,答案(1)36π(2)C所以13r3=9⇒r=3,所以球O的表面积为4πr2=36π.(2)因为△AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥O-ABC的体积取得最大值.由13×12R2×R=36,得R=6.从而球O的表面积S=4πR2=144π.所以VA-SBC=13×S△SBC×OA=13×12×2r×r×r=13r3,

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功