解直角三角形应用举例(1)(1)三边之间的关系:a2+b2=c2(勾股定理)解直角三角形的依据(2)锐角之间的关系:∠A+∠B=90º(3)边角之间的关系:abBcaBcbBbaAcbAcaAtan,cos,sintan,cos,sinACBabcP74例3:2008年10月15日“神舟”7号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.·OQFPα如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点,弧PQ的长就是地面上P、Q两点间的距离,为计算弧PQ的长需先求出∠POQ(即a)解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.95.035064006400cosOFOQa18a∴弧PQ的长为6.200964014.3640018018当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km·OQFPα仰角和俯角铅直线水平线视线视线仰角俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.例4:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60°Rt△ABC中,a=30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.ABCDαβ仰角水平线俯角解:如图,a=30°,β=60°,AD=120.ADCDADBDatan,tan30tan120tanaADBD3403312060tan120tanADCD312031203120340CDBDBC1.2773160答:这栋楼高约为277.1mABCDαβ练习:两个建筑物AB和CD的水平距离是72m,从其中一个建筑物的顶点A测得另一个建筑物的顶点C的俯角是30º,底D的俯角是45º求这两个建筑物的高.A72mECDB450300练习:如图,在地平面上一点A测得塔尖C的仰角为45º,向前进100米,在B处又测得塔尖C的仰角为60º,求塔高CD。ABCD4560例5.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)65°34°PBCA30°45°BOA东西北南【方位角】指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的北偏东30°点B在点O的南偏西45°(西南方向)解:如图,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈80×0.91=72.8在Rt△BPC中,∠B=34°PBPCBsin23.130559.08.7234sin8.72sinBPCPB当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.65°34°PBCA练习1.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m,tan540≈1.38)ABCD40m54°45°ABCD40m54°45°解:在等腰三角形BCD中∠ACD=90°BC=DC=40m在Rt△ACD中tanACADCDCtan54401.384055.2所以AB=AC-BC=55.2-40=15.2答:棋杆的高度为15.2m.ADCDCACtan练习2.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°ABCED∴∠BED=∠ABD-∠D=90°cosDEBDEBDcos505200.64520332.8答:开挖点E离点D332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角BDEBDDEcos例6.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?BADF60°1230°BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F,∠AFD=90°由题意图示可知∠DAF=30°设DF=x,AD=2x222223AFADDFxxx在Rt△ABF中,tanAFABFBF3tan3012xx解得x=666310.4AFx10.48没有触礁危险30°60°(2014年河南)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.海平面300680DBAC解直角三角形应用举例(2)【坡度与坡角】tanhil坡度一般用i来表示,即,一般写成i=1:m,如i=1:5lhi(1)坡面的铅直高度h和水平宽度的比叫做坡度l显然,坡度越大,坡角就越大,坡面就越陡.h水库αlhil2.坡度与坡角的关系(2)坡面与水平面的夹角叫坡角例一段河坝的横断面为等腰梯形ABCD,试根据下图中的数据求出坡角α和坝底宽AD.(单位是米,结果保留根号)ABCDF4E6α3:1i例7.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝底宽BC和斜坡CD的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.53m(2014•四川巴中)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系222cba(勾股定理)ABabcC在解直角三角形的过程中,一般要用到下面一些关系:感悟:利用解直角三角形的知识解决实际问题的一般步骤:1.将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.(有“弦”用“弦”;无“弦”用“切”)人有了知识,就会具备各种分析能力,明辨是非的能力。所以我们要勤恳读书,广泛阅读,古人说“书中自有黄金屋。”通过阅读科技书籍,我们能丰富知识,培养逻辑思维能力;通过阅读文学作品,我们能提高文学鉴赏水平,培养文学情趣;通过阅读报刊,我们能增长见识,扩大自己的知识面。有许多书籍还能培养我们的道德情操,给我们巨大的精神力量,鼓舞我们前进。