初一(七年级)数学寒假作业答案为了不让大家因假期而和其他同学拉下差距,小编特地为大家准备了这篇初一(七年级)数学寒假作业答案,希望你们能时刻记住自己的主要任务还是学习。一、选择题(4分8=32分,下面每小题给出的四个选项中,只有一个是正确的)1.(4分)确定平面直角坐标系内点的位置是()A.一个实数B.一个整数C.一对实数D.有序实数对考点:坐标确定位置.分析:比如实数2和3并不能表示确定的位置,而有序实数对(2,3)就能清楚地表示这个点的横坐标是2,纵坐标是3.解答:解:确定平面直角坐标系内点的位置是有序实数对,故选D.2.(4分)下列方程是二元一次方程的是()A.x2+x=1B.2x+3y﹣1=0C.x+y﹣z=0D.x++1=0考点:二元一次方程的定义.分析:根据二元一次方程的定义进行分析,即只含有两个未知数,未知数的项的次数都是1的整式方程.解答:解:A、x2+x=1不是二元一次方程,因为其最高次数为2,且只含一个未知数;B、2x+3y﹣1=0是二元一次方程;C、x+y﹣z=0不是二元一次方程,因为含有3个未知数;D、x++1=0不是二元一次方程,因为不是整式方程.(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.3.(4分)已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)考点:点的坐标.分析:根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.解答:解:∵P点位于y轴右侧,x轴上方,P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,4.(4分)将下列长度的三条线段首尾顺次相接,能组成三角形的是()A.4cm,3cm,5cmB.1cm,2cm,3cmC.25cm,12cm,11cmD.2cm,2cm,4cm考点:三角形三边关系.分析:看哪个选项中两条较小的边的和大于最大的边即可.解答:解:A、3+45,能构成三角形;B、1+2=3,不能构成三角形;C、11+1225,不能构成三角形;5.(4分)关于x的方程2a﹣3x=6的解是非负数,那么a满足的条件是()A.3B.3C.3D.3考点:一元一次方程的解;解一元一次不等式.分析:此题可用a来表示x的值,然后根据x0,可得出a的取值范围.解答:解:2a﹣3x=6x=(2a﹣6)36.(4分)学校计划购买一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是()A.正三角形B.正四边形C.正五边形D.正六边形考点:平面镶嵌(密铺).专题:几何图形问题.分析:看哪个正多边形的位于同一顶点处的几个内角之和不能为360即可.解答:解:A、正三角形的每个内角为60,6个能镶嵌平面,不符合题意;B、正四边形的每个内角为90,4个能镶嵌平面,不符合题意;C、正五边形的每个内角为108,不能镶嵌平面,符合题意;D、正六边形的每个内角为120,3个能镶嵌平面,不符合题意;7.(4分)下面各角能成为某多边形的内角的和的是()A.270B.1080C.520D.780考点:多边形内角与外角.分析:利用多边形的内角和公式可知,多边形的内角和是180度的整倍数,由此即可找出答案.解答:解:因为多边形的内角和可以表示成(n﹣2)1803且n是整数),则多边形的内角和是180度的整倍数,8.(4分)(2018南昌)设●▲■表示三种不同的物体,现用天平称了两次,情况如图所示,那么■▲●这三种物体按质量从大到小的排列顺序为()A.■●▲B.■▲●C.▲●■D.▲■●考点:一元一次不等式的应用.专题:压轴题.分析:本题主要通过观察图形得出■▲●这三种物体按质量从大到小的排列顺序.解答:解:因为由左边图可看出■比▲重,由右边图可看出一个▲的重量=两个●的重量,所以这三种物体按质量从大到小的排列顺序为■▲●,二、填空题9.(3分)已知点A(1,﹣2),则A点在第四象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.10.(3分)如图,直角三角形ACB中,CD是斜边AB上的中线,若AC=8cm,BC=6cm,那么△ACD与△BCD的周长差为2cm,S△ADC=12cm2.考点:直角三角形斜边上的中线.分析:过C作CEAB于E,求出CD=AB,根据勾股定理求出AB,根据三角形的面积公式求出CE,即可求出答案.解答:解:过C作CEAB于E,∵D是斜边AB的中点,AD=DB=AB,∵AC=8cm,BC=6cm△ACD与△BCD的周长差是(AC+CD+AD)﹣(BC+BD+CD)=AC﹣BC=8cm﹣6cm=2cm;在Rt△ACB中,由勾股定理得:AB==10(cm),∵S三角形ABC=ACBC=ABCE,86=10CE,CE=4.8(cm),11.(3分)如图,象棋盘上将位于点(1,﹣2),象位于点(3,﹣2),则炮的坐标为(﹣2,1).考点:坐标确定位置.分析:首先根据将和象的坐标建立平面直角坐标系,再进一步写出炮的坐标.解答:解:如图所示,则炮的坐标是(﹣2,1).12.(3分)(2018菏泽)黑、白两种颜色的正六边形地砖按如图所示的规律拼成若干个图案:则第n个图案中有白色地砖4n+2块.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题;规律型.分析:通过观察,前三个图案中白色地砖的块数分别为:6,10,14,所以会发现后面的图案比它前面的图案多4块白色地砖,可得第n个图案有4n+2块白色地砖.解答:解:分析可得:第1个图案中有白色地砖41+2=6块.第2个图案中有白色地砖42+2=10块.第n个图案中有白色地砖4n+2块.三、解答题(5分5=25分)13.(5分)用代入法解方程组:.考点:解二元一次方程组.分析:把第二个方程整理得到y=3x﹣5,然后代入第一个方程求出x的值,再反代入求出y的值,即可得解.解答:解:,由②得,y=3x﹣5③,③代入①得,2x+3(3x﹣5)=7,解得x=2,14.(5分)用加减消元法解方程组:.考点:解二元一次方程组.专题:计算题.分析:根据x的系数相同,利用加减消元法求解即可.解答:解:,①﹣②得,12y=﹣36,解得y=﹣3,把y=﹣3代入①得,4x+7(﹣3)=﹣19,15.(5分)解不等式:.考点:解一元一次不等式.分析:利用不等式的基本性质,首先去分母,然后移项、合并同类项、系数化成1,即可求得原不等式的解集.解答:解:去分母,得:3(2+x)2(2x﹣1)去括号,得:6+3x4x﹣2,移项,得:3x﹣4x﹣2﹣6,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)解不等式组,并求其整解数并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别求出各不等式的解集,再求出其公共解集,再其公共解集内找出符合条件的x的整数解即可.解答:解:,由①得,x1,由②得,x﹣2,故此不等式组的解集为:﹣21,在数轴上表示为:17.(5分)若方程组的解x与y相等,求k的值.考点:二元一次方程组的解.专题:计算题.分析:由y=x,代入方程组求出x与k的值即可.解答:解:由题意得:y=x,代入方程组得:,四、解答题(5分2=10分)18.(2分)如图,△ABC中,D在BC的延长线上,过D作DEAB于E,交AC于F.已知A=30,FCD=80,求D.考点:三角形内角和定理.分析:由三角形内角和定理,可将求D转化为求CFD,即AFE,再在△AEF中求解即可.解答:解:∵DEAB(已知),FEA=90(垂直定义).∵在△AEF中,FEA=90,A=30(已知),AFE=180﹣FEA﹣A(三角形内角和是180)=180﹣90﹣30=60.又∵CFD=AFE(对顶角相等),CFD=60.在△CDF中,CFD=60FCD=80(已知)19.(2分)已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明2.考点:三角形的外角性质.专题:证明题.分析:由三角形的外角性质知ABC+BAC,BAC=AEF,从而得证.解答:证明:∵ABC+BAC,五、作图题(6分)20.(6分)如图,在△ABC中,BAC是钝角,请按下列要求画图.画(1)BAC的平分线AD;(2)AC边上的中线BE;(3)AB边上的高CF.考点:作图复杂作图.专题:作图题.分析:(1)以点A为圆心,以任意长为半径画弧与边AB、AC两边分别相交于一点,再以这两点为圆心,以大于这两点距离的为半径画弧相交于一点,过这一点与点A作出角平分线AD即可;(2)作线段AC的垂直平分线,垂足为E,连接BE即可;(3)以C为圆心,以任意长为半径画弧交BA的延长线于两点,再以这两点为圆心,以大于这两点间的长度的为半径画弧,相交于一点,然后作出高即可.解答:解:(1)如图,AD即为所求作的BAC的平分线;(2)如图,BE即为所求作的AC边上的中线;(3)如图,CF即为所求作的AB边上的高.六、解答题(21题5分)21.(5分)在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.考点:坐标与图形变化-平移.分析:先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点C向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点F分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.解答:解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.七、解答题(7分)22.(7分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:第一次第二次甲种货车辆数(辆)25乙种货车辆数(辆)36累计运货吨数(吨)15.535现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?考点:二元一次方程组的应用.专题:图表型.分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.解答:解:设甲种货车每辆每次运货x(t),乙种货车每辆每次运货y(t).则有,解得.23.(7分)探究:(1)如图①,2与C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:2=C(填=),当A=40时,C+2=280(3)如图③,是由图①的△ABC沿DE折叠得到的,如果A=30,则x+y=360﹣(C+2)=360﹣300=60,猜想BDA+CEA与A的关系为BDA+CEA=2A.考点:翻折变换(折叠问题).专题:探究型.分析:根据三角形内角是180度可得出,2=C,从而求出当A=40时,C+2=1402=280,有以上计算可归纳出一般规律:BDA+CEA=2A.解答:解:(1)根据三角形内角是180可知:2=180﹣A,C=180﹣A,2=C;(2)∵2+BDE+CED=C+BDE+CED=360,2=C;当A=40时,C+2=1402=280(3)如果A=30,则x+y=360﹣(C+2)=360﹣300=60,由小编为大家提供的这篇初一(七年级)数学寒假作业答案就到这里了,希望这篇文章可以帮助到您!