纳米材料合成方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

天津理工大学纳米材料与技术研究中心我国古代用光滑的陶瓷在蜡烛火焰的上方收集烟雾,经冷凝后变成很细的纳米碳粉,用这种超细碳粉做成的墨具有良好的性能,这是一种制备纳米材料的最简单方法。第三章:纳米材料合成方法概述纳米材料制备途径{从小到大:原子团簇纳米颗粒从大到小:固体微米颗粒纳米颗粒通常可通过两大的途径得到纳米材料:天津理工大学纳米材料与技术研究中心按有无发生反应目前纳米材料制备常采用的方法:天津理工大学纳米材料与技术研究中心(按物态分类)气相法液相法固相法蒸发-冷凝法化学气相反应法溶胶-凝胶法沉淀法喷雾法非晶晶化法机械粉碎(高能球磨)法固态反应法天津理工大学纳米材料与技术研究中心主要介绍以下三类纳米结构的制备方法零维纳米材料的制备方法,如纳米颗粒等。一维纳米材料的制备方法,如纳米线等。二维纳米材料的制备方法,如纳米薄膜等。天津理工大学纳米材料与技术研究中心零维纳米材料的制备方法固相合成法气相合成法液相合成法天津理工大学纳米材料与技术研究中心高能球磨法制备纳米材料滚动球磨搅拌球磨振动球磨高能球磨法已成功地制备出以下几类纳米晶材料:纳米晶纯金属、固溶体、纳米金属间化合物及纳米金属-陶瓷粉复合材料。液态金属非晶条带热处理固相法制备纳米材料非晶晶化法该法采用快速凝固法将液态金属制备非晶条带,再将非晶条带经过热处理使其晶化获得纳米晶条带的方法。特点﹕工艺较简单,化学成分准确。非晶晶化法制备的纳米材料的塑性对粒径十分敏感,只有粒径很小时,塑性较好.否则材料变得很脆。因此,对于某些成核激活能很小,晶粒长大激活能大的非晶合金采用非晶晶化法,才能获得塑性较好的纳米晶合金。天津理工大学纳米材料与技术研究中心高温燃烧合成法利用外部提供的能量诱发高放热反应,体系局部发生反应形成反应前沿(燃烧波),化学反应在自身放出热量的支持下快速进行,燃烧波蔓延整个体系。反应热使前驱物快速分解,导致大量气体放出,避免了前驱物因熔融而粘连,体系在瞬间达到几千度的高温,可使挥发性杂质蒸发除去。例如:以硝酸盐和有机燃料经氧化还原反应制备掺Y的ZrO2粒子;采用钛粉坯在N2中燃烧,获得的高温来点燃镁粉坯合成出Mg3N2。构筑法的一个例子——分子束外延该方法是在低压的Ar、He等惰性气体中加热蒸发源,使其蒸发汽化,然后在气体介质中冷凝后形成5-100nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。蒸发-冷凝法根据加热蒸发源的方式不同可分为:电阻加热法、高频感应法、溅射法、混合等离子法、流动液面真空蒸镀法等。天津理工大学纳米材料与技术研究中心惰性气体原位加压法是由Gleiter等人提出的,已成功地制备了Fe、Cu、Au、Pd等纳米金属块体材料惰性气体原位加压法液氮蒸发源漏斗蒸发源真空泵隋性气体真空室惰性气体原位加压法示意图该法是制粉和成形一步完成。包括:(1)制备纳米颗粒;(2)颗粒收集;和(3)压制成块体等三步。在高真空中采用电子束加热来蒸发金属原子,在流动的油面内形成纳米粒子,产品为含有大量纳米微粒的糊状油。流动液面真空蒸镀法此方法的优点:①可制备Ag、Au.Pd、Cu、Fe、Ni、Co、Al、In等纳米颗粒,平均粒径约3nm,而用惰性气体蒸发法很难获得这样小的微粒;②粒径均匀.分布窄;③纳米颗粒分散地分布在油中。④粒径的尺寸可控。天津理工大学纳米材料与技术研究中心溅射法用两块金属板分别作为阳极、阴极,阴极为蒸发用的材料,两电极间充入Ar气,两极间辉光放电形成的Ar+在电场的作用下冲击阴极靶材表面,使靶材原子从其表面蒸发并沉积下来形成纳米粒子。可制备多种纳米金属(包括高熔点和低熔点金属)及多组元的化合物纳米微粒天津理工大学纳米材料与技术研究中心激光诱导化学气相沉积(LICVD)往捕集装置反应焰激光束反应气体氩气激光挡板(LICVD)法制备纳米材料是近几年兴起的。该法利用反应气体分子(或光敏剂分子)对特定波长激光束的吸收,引起反应气体分子激光光解、激光热解、激光光敏化和激光诱导化学反应,通过激光束照在反应气体上形成反应焰,经反应在火焰中形成纳米微粒,由氩气携带进入上方微粒捕集装置。天津理工大学纳米材料与技术研究中心特点:该法具有清洁表面、粒子大小可精确控制、无粘结、粒度分布均匀等优点,并容易制备出几纳米至几十纳米的非晶态或晶态纳米微粒。激光辐照硅烷气体分子(SiH4)时.硅烷分子很容易热解热解生成的气体硅Si(g)在一定温度和压力条件下开始成核和生长,形成纳米微粒。喷射沉积法沉淀法液相法溶胶-凝胶法微乳液法喷雾法水热法液相法是目前实验室和工业广泛采用的纳米材料的制备方法,主要用于氧化物纳米材料的制备。特点﹕设备简单、原料容易获得、纯度高、均匀性好、化学组成控制准确等优点。沉淀法主要分为:直接沉淀法、共沉淀法、均匀沉淀法、水解沉淀法、化合物沉淀法等沉淀物的粒径取决于核形成与核成长的相对速度。即核形成速度低于核成长,那么生成的颗粒数就少,单个颗粒的粒径就变大。A+溶液沉淀剂沉淀物过滤、干燥或煅烧纳米粉体沉淀条件:[A+].[B-]KspKsp溶度积Ag+溶液Cl-溶液AgCl过滤、干燥纳米粉体在金属盐溶液中加入沉淀剂时,沉淀剂浓度在局部会变得很高。均匀沉淀法是不外加沉淀剂,而是使沉淀剂在溶液内缓慢地生成,消除了沉淀剂的局部不均匀性。如:将尿素水溶液加热到70oC左右,就会发生如下水解反应(NH2)2CO+3H2O→2NH3.H2O+CO2YCl3+3NH3.H2O→Y(OH)3+3NH4Cl2Y(OH)3→Y2O3+3H2O生成了沉淀剂NH3.H2O有很多化合物可用水解生成沉淀,通过控制其水解条件可用来制备纳米粒子,反应的产物一般是氢氧化物或水合物。因为原料是水解反应的对象是金属盐和水,若使用的是高纯度的金属盐,就很容易得到高纯度纳米粒子。如:Fe3+无机盐水解法水解-Fe2O3(纳米粒子)Fe(OH)3加热金属醇盐水解法钛酸丁酯控制水解TiO2沉淀热处理TiO2纳米粉体在含有多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称为共沉淀法。根据沉淀的类型可分为单相共沉淀和混合共沉淀。Ba、Ti的硝酸盐溶液BaTiO(C2H4)2.4H2O沉淀BaTiO3高温草酸关键在于:如何使组成材料的多种离子同时沉淀?Zn、Fe的硝酸盐溶液Zn(OH)2.Fe(OH)3沉淀ZnFe2O4高温OH-水热过程是指在高温、高压下在水、水溶液或蒸气等流体中所进行有关化学反应的总称。在常温常压下一些从热力学上能进行的反应,往往因反应速度极慢而没有价值。但在水热条件下却可能使反应得以实现。1、水热氧化:mM+nH2O→MmOn+H22、水热沉淀:KF+MnCl2→KMnF23、水热合成:FeTiO3+KOH→K2O.nTiO24、水热还原:MexOy+yH2→xMe+yH2O5、水热分解:ZrSiO4+NaOH→ZrO2+Na2SiO36、水热结晶:Al(OH)3→Al2O3.H2O用有机溶剂代替水作介质,采用类似水热合成的原理制备纳米粒子。非水溶剂代替水,不仅扩大了水热技术的应用范围,而且能够实现通常条件下无法实现的反应,包括制备具有亚稳态结构的材料。溶剂热法苯由于其稳定的共轭结构,是溶剂热合成的优良溶剂,最近成功地发展成苯热合成技术,溶剂热合成技术可以在相对低的温度和压力下制备出通常在极端条件下才能制得的、在超高压下才能存在的亚稳相。基本原理:将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。溶胶-凝胶法一般包括以下过程●先沉淀后解凝●控制沉淀过程直接获得溶胶●控制电解质浓度●迫使胶粒间相互靠近●加热蒸发●焙烧等天津理工大学纳米材料与技术研究中心利用溶胶-凝胶法可制备多种材料的纳米粉体和纳米薄膜。如氧化物纳米粉和薄膜、非晶体玻璃、多晶体陶瓷纳米粉和薄膜等。SolutionSolGelNanoparticlesFilm氢氧化钡的乙二醇单甲醚溶液钛酸正丁脂的乙醇溶液无定形BaTiO3凝胶1:1溶胶灼烧蒸馏水和乙二醇单甲醚的混合液溶胶凝胶法制备复合氧化物粉体溶胶-凝胶法制备钛酸钡纳米粉体的工艺流程图溶胶一凝胶法的优缺点(1)化学均匀性好。由于溶胶-凝胶过程中,溶胶由溶液制得。故胶粒内及胶粒间化学成分完全一致。(2)高纯度。粉料(持别是多组分粉料)制备过程中无需机械混合。(3)该法可容纳不溶性组分或不沉淀组分。不溶性颗粒均匀地分散在含不产生沉淀的组分的溶液中.经胶凝化,不溶性组分可自然地固定在凝胶体系中。不溶性组分颗粒越细,体系化学均匀性越好。(1)烘干后容易形成硬团聚现象,在氧化物中多数是桥氧链的形成,再加上球形凝胶颗粒自身烧结温度低,但凝胶颗粒之间烧结性差,块体材料烧结件不好。(2)干燥时收缩大。喷雾干燥法喷雾法是将溶液通过各种物理手段进行雾化获得纳米粒子的一种化学与物理相结合的方法。喷雾干燥法是将金属盐水溶液或氢氧化物溶胶送入雾化器,由喷嘴高速喷入干燥室获得了金属盐或氧化物的微粒,收集后再倍烧成所需要成分的纳米粒子。特点:可连续生产、操作简单、但有些盐类分解时有毒气产生例如:将NiSO4、Fe2(SO4)3和ZnSO4的水溶液按一定比例混合后喷雾干燥得到小颗粒,再在800~1000oC下焙烧得到磁性材料Ni、Zn铁氧体Ni(Zn)Fe2O4。天津理工大学纳米材料与技术研究中心电解法电解法包括水溶液电解和熔盐电解两种。该法可制得很多通常方法不能制备或难以制备的金属纳米粉,尤其是电负性很小的金属纳米粉。通常采用加有机溶剂于电解液中的滚筒阴极电解法制备金属纳米粉。滚筒置于两液相交界处,当滚筒在水溶液中时,金属在其上面析出,而转动到有机液中时,金属析出停止,已析出之金属被有机溶液涂覆。当再转动到水溶液中时,又有金属析出,两次析出之金属间因有机膜阻隔而不能联结在一起。该方法得到的粉末纯度高,粒径细,而且成本低,适于扩大和工业生产。天津理工大学纳米材料与技术研究中心通常所制备的纳米材料是相互团聚或缠绕表面包覆和表面改性表面包覆表面改性微乳液法微乳液通常是有表面活性剂、助表面活性剂、油类组成的透明的、各向同性的热力学稳定体系。微乳液中存在由表面活性剂和助表面活性剂所构成微小的“水池”,其大小在几至几十个纳米间,这些微小的“水池”彼此分离,就是“微反应器”。表面活性剂的结构特点:分子中同时有疏水基团(烷烃基)和亲水基团(羧基、氨基)。表面活性剂溶液浓度超过一定值,其分子在溶液中会形成不同类型的分子有序组合体。表面活性剂在溶液中超过一定浓度时,会从单体(单个离子或分子)缔合成为胶态聚集物,即形成胶团。溶液性质发生突变的浓度,亦即形成胶团的浓度,称为临界胶团浓度。胶束的形成过程及几种胶束结构示意图天津理工大学纳米材料与技术研究中心与其它化学法相比,微乳法制备的粒子不易聚结,大小可控,分散性好,可制备多种材料纳米粒子。亲油端在内、亲水端在外的“水包油型”胶团,叫“正相胶团”亲水端在内、亲油端在外的“油包水型”胶团,叫“反相胶团”正相胶团的直径大约为5-100nm,反相胶团的直径约为3-6nm,而多层囊泡的直径一般为100-800nm。反相胶束模板制备纳米材料机理以下面反应为例:A+B→C↓+DA,B为溶于水的反应物,C为不溶于水的沉淀,D为副产物机理一:直接加入法-渗透反应机理A+W/O微乳液反应物BB在反相微乳液扩散并向胶束渗透A、B在胶束中反应、微粒成核和长大控制过程如金属烷基化合物加水分解制备氧化物纳米微粒、镉盐与硫化氢制备CdS纳米微粒微粒的形成一般经历:化学反应、成核和长大阶段天津理工大学纳米材料与技术研究中心微乳液法制备Fe2O3示意图机理二:共混法-融合反应机理B+W/O微乳液A、B两种反相微乳液的胶束相互碰撞、融合、交换、传质A、B在胶束中反应、微粒成核和长大控制过程A+W/O微乳液含有相同的水油比如硝酸银与氯化钠反应制备氯化银纳米微粒气相合成方法,如化学气相沉积(CVD)等;液相合成方法,如电化学沉积等;其它合成方法;•气-液-固(VLS)生长机制•气-

1 / 60
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功