第1页(共19页)2016-2017学年山东省潍坊市寿光市八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.4的平方根是()A.16B.4C.±2D.22.下列二次根式中,能与合并的是()A.B.C.D.3.若(m+1)x﹣3>0是关于x的一元一次不等式,则m的值为()A.±1B.1C.﹣1D.04.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个5.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135°B.120°C.112.5°D.67.5°6.若a﹣b<0,则下列各式中一定正确的是()A.a>bB.ab>0C.D.﹣a>﹣b7.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长分别为5,12,14C.三边长之比为3:4:5D.三边长分别为1,,8.等式=成立的条件是()A.a≠1B.a>1C.a≥2D.﹣1<a≤29.已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围第2页(共19页)是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<1210.下列各数中是无理数的是()A.B.3.1415926C.D.11.如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2mB.2.5mC.3mD.3.5m12.某工厂要把27块棱长均为5cm的正方体铁块,并将这些熔化的铁块放在一起制作成一个大的正方体铁块,若熔化的过程中损耗忽略不计,则新铁块的棱长为()A.10cmB.12cmC.13cmD.15cm二、填空题(每小题3分,共18分)13.若代数式有意义,则字母x的取值范围是.14.在直角三角形中,两边长分别为3和4,则最长边的长度为.15.若不等式(n﹣2)x>﹣1的解集为x<﹣,则n的取值范围是.16.若对实数a、b、c、d规定运算=ad﹣bc,那么=.17.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.第3页(共19页)18.如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是.三、解答题(12分+8分+10分+12分+12分=66分)19.(1)(﹣)÷×(2)4a2﹣7(3)(+5)(5﹣2)﹣(﹣)2.20.解不等式﹣≥,并把它的解集在数轴上表示出来.21.已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.22.在由6个边长为1的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.第4页(共19页)24.在某市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.第5页(共19页)2016-2017学年山东省潍坊市寿光市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.4的平方根是()A.16B.4C.±2D.2【考点】21:平方根.【分析】直接根据平方根的定义求解.【解答】解:4的平方根为±2.故选C.2.下列二次根式中,能与合并的是()A.B.C.D.【考点】77:同类二次根式.【分析】同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.【解答】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选B.3.若(m+1)x﹣3>0是关于x的一元一次不等式,则m的值为()A.±1B.1C.﹣1D.0【考点】C5:一元一次不等式的定义.【分析】利用一元一次不等式的定义判断即可确定出m的值.第6页(共19页)【解答】解:依题意得:m2=1且m+1≠0,解得m=1.故选:B.4.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个【考点】L6:平行四边形的判定.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.按照平行四边形的判定方法进行判断即可.【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选:C.5.如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135°B.120°C.112.5°D.67.5°【考点】LE:正方形的性质;L8:菱形的性质.【分析】先根据正方形的性质求出∠DBC=45°,再根据角平分线的定义得出∠EBF,第7页(共19页)然后由外角的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∠DBC=∠ABD=45°,∵四边形BEFD是菱形,∴∠EBF=∠DBC=22.5°,∴∠FPC=∠BCD+∠EBF=90°+∠22.5°=112.5°;故选:C.6.若a﹣b<0,则下列各式中一定正确的是()A.a>bB.ab>0C.D.﹣a>﹣b【考点】C2:不等式的性质.【分析】由a﹣b<0,可得:a<b,因而a>b错误;当a<0b>0时,ab>0错误;当a=﹣1,b=2时,<0因而第三个选项错误;根据:不等式两边乘(或除以)同一个负数,不等号的方向改变.在不等式a<b的两边同时乘以﹣1,得到:﹣a>﹣b.【解答】解:∵a﹣b<0,∴a<b,根据不等式的基本性质3可得:﹣a>﹣b;故本题选D.7.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长分别为5,12,14C.三边长之比为3:4:5D.三边长分别为1,,【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、180°×=90°,是直角三角形,故此选项不合题意;B、52+122≠142,不能作为直角三角形的三边长,故本选项符合题意;第8页(共19页)C、32+42=52,能作为直角三角形的三边长,故本选项不符合题意;D、12+()2=()2,能作为直角三角形的三边长,故本选项不符合题意;故选:B.8.等式=成立的条件是()A.a≠1B.a>1C.a≥2D.﹣1<a≤2【考点】75:二次根式的乘除法.【分析】直接利用二次根式的性质得出各式的符号,进而求出答案.【解答】解:∵等式=成立,∴,解得:a≥2.故选:C.9.已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<12【考点】C7:一元一次不等式的整数解.【分析】先求出不等式的解集,再根据正整数解恰好是1,2,3,4,5,逆推a的取值范围.【解答】解:解不等式2x﹣a≤0得:x≤a.根据题意得:5≤a<6,解得:10≤a<12.故选D.10.下列各数中是无理数的是()A.B.3.1415926C.D.【考点】26:无理数.第9页(共19页)【分析】A、B、C、D分别根据无理数、有理数的定义即可判定选择项.【解答】解:A、是有理数,故A不符合题意;B、是有理数,故B不符合题意;C、是有理数,故C不符合题意;D、是无理数,故D符合题意;故选:D.11.如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2mB.2.5mC.3mD.3.5m【考点】KU:勾股定理的应用.【分析】首先在Rt△ABO中利用勾股定理计算出AO的长,在Rt△COD中计算出DO的长,进而可得BD的长.【解答】解:在Rt△ABO中:AO===8(米),∵梯子的顶端下滑了2m,∴AC=2米,∴CO=6米,在Rt△COD中:DO===8(米),∴BD=DO﹣BO=8﹣6=2(米),故选:A.第10页(共19页)12.某工厂要把27块棱长均为5cm的正方体铁块,并将这些熔化的铁块放在一起制作成一个大的正方体铁块,若熔化的过程中损耗忽略不计,则新铁块的棱长为()A.10cmB.12cmC.13cmD.15cm【考点】24:立方根.【分析】求出27个小正方体体积之和,得到大正方体的体积,进而求出大正方体的棱长.【解答】解:大正方体的体积为:27×53(cm3),新正方体的棱长为:=15(cm).故选:D.二、填空题(每小题3分,共18分)13.若代数式有意义,则字母x的取值范围是﹣3≤x<1或x>1.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据函数表达式是分式时,考虑分式的分母不能为0;函数表达式是二次根式时,被开方数非负,可得答案.【解答】解:由代数式有意义,得.解得﹣3≤x<1或x>1,故答案为:﹣3≤x<1或x>1.14.在直角三角形中,两边长分别为3和4,则最长边的长度为4或5.【考点】KQ:勾股定理.【分析】分类讨论,①当4为直角边时,②当4为斜边时,依次求出答案即可.【解答】解:①当4为斜边时,此时最长边为4.②当4是直角边时,斜边==5,此时最长边为5.故答案是:4或5.第11页(共19页)15.若不等式(n﹣2)x>﹣1的解集为x<﹣,则n的取值范围是n<2.【考点】C3:不等式的解集.【分析】根据不等式的性质,可得答案.【解答】解:两边都除以(n﹣2),不等号的方向改变,得n﹣2<0,解得n<2,故答案为:n<2.16.若对实数a、b、c、d规定运算=ad﹣bc,那么=2.【考点】2C:实数的运算.【分析】根据规定运算=ad﹣bc,求出的值是多少即可.【解答】解:=﹣1×﹣(﹣4)×=﹣2+4=2故答案为:2.17.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是24.【考点】L8:菱形的性质;KX:三角形中位线定理.【分析】根据题意可得出EF是△ABC的中位线,易得BC长为EF长的2倍,那第12页(共19页)么菱形ABCD的周长=4BC.【解答】解:∵AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=3,∴BC=6,∴菱形ABCD的周长是4×6=24.故答案为24.18.如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是13.【考点】LJ:等腰梯形的性质.【分析】根据等腰梯形的两腰相等可得