1二、基本积分表(188页1—15,205页16—24)(1)kdxkxC(k是常数)(2)1,1xxdxC(1)u(3)1ln||dxxCx(4)2tan1dxarlxCx(5)2arcsin1dxxCx(6)cossinxdxxC(7)sincosxdxxC(8)21tancosdxxCx(9)21cotsindxxCx(10)sectansecxxdxxC(11)csccotcscxxdxxC(12)xxedxeC(13)lnxxaadxCa,(0,1)aa且(14)shxdxchxC(15)chxdxshxC(16)2211tanxdxarcCaxaa2(17)2211ln||2xadxCxaaxa(18)221sinxdxarcCaax(19)22221ln()dxxaxCax(20)2222ln||dxxxaCxa(21)tanln|cos|xdxxC(22)cotln|sin|xdxxC(23)secln|sectan|xdxxxC(24)cscln|csccot|xdxxxC注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。2、以上公式把x换成u仍成立,u是以x为自变量的函数。3、复习三角函数公式:2222sincos1,tan1sec,sin22sincos,xxxxxxx21cos2cos2xx,21cos2sin2xx。注:由[()]'()[()]()fxxdxfxdx,此步为凑微分过程,所以第一类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。3小结:1常用凑微分公式xuxuxuxuxuxuaueuxuxubaxuxdxfdxxxfxdxfdxxxfxdxfxdxxfxdxfxdxxfxdxfxdxxfxdxfxdxxfdaafadxaafdeefdxeefxdxfdxxxfxdxfdxxxfabaxdbaxfadxbaxfxxxxxxxxxxarcsinarctancottancossinln)(arcsin)(arcsin11)(arcsin.11)(arctan)(arctan11)(arctan.10cot)(cotcsc)(cot.9tan)(tansec)(tan.8cos)(cossin)(cos.7sin)(sincos)(sin.6)(ln1)(.5)()(..4)(ln)(ln1)(ln.3)0()()(1)(.2)0()()(1)(.122221法分积元换一第换元公式积分类型