董超编写1第七章电化学7-13.电池Pt│H2(101.325kPa)│HCl(0.1mol·kg-1)│Hg2Cl2(s)│Hg在电动势E与温度T的关系为E∕V=0.0694+1.881×10-3T∕K-2.9×10-6(T∕K)2(1)写出电极反应和电池反应;(2)计算25℃时该反应的ΔrGm、ΔrSm、ΔrHm,以及电池恒温可逆放电时该反应过程的Qr,m;(3)若反应在电池外在同样温度下恒压进行,计算系统与环境交换的热。解:(1)阳极反应:H2(101.325kPa)2H+(0.1mol·kg-1)+2e阴极反应:Hg2Cl2(s)+2e2Hg(l)+2Cl-(0.1mol·kg-1)电池反应:H2(101.325kPa)+Hg2Cl2(s)2Hg(l)+2HCl(0.1mol·kg-1)(2)25℃时E=0.3724V()pET∂∂=1.881×10-3-5.8×10-6(T∕K)=1.517×10-4V·K-1ΔrGm=-1F×0.3724=-35.94kJ·mol-1=-2F×0.3724=-71.87kJ·mol-1ΔrSm=1F×1.517×10-4=14.64J·K-1·mol-1=2F×1.517×10-4=29.28J·K-1·mol-1ΔrHm=-35.94+298.15×14.64×10-3=-35.94+4.37=-31.57kJ·mol-1=-71.87+298.15×29.28×10-3=-71.87+8.74=-63.14kJ·mol-1Qr=298.15×14.64×10-3=4.37kJ·mol-1=298.15×29.28×10-3=8.74kJ·mol-1(3)Qp=-31.57kJ·mol-1或Qp=-63.14kJ·mol-17-15.甲烷燃烧过程可设计成燃料电池,当电解质为酸性溶液时,电极反应和电池反应分别为:阳极CH4(g)+2H2O(l)CO2(g)+8H++8e-阴极2O2(g)+8H++8e-4H2O(l)电池反应CH4(g)+2O2(g)CO2(g)+2H2O(l)已知,25℃时时有关物质的标准摩尔生成吉布斯函数0fmGΔ为:物质CH4(g)CO2(g)H2O(l)0fmGΔ∕kJ·mol-1-50.72-394.359-237.129董超编写2计算25℃时时该电池反应的标准电动势。解:0rmGΔ=2×(-237.129)+(-394.359)-(-50.72)=-817.897kJ·mol-10E=3817.897108F×=1.0596V7-14.25℃时,电池Zn│ZnCl2(0.555mol·kg-1)│AgCl(s)│Ag在电动势E=1.015V。已知0E(Zn2+│Zn)=-0.7620V,0E(Cl-│AgCl│Ag)=0.2222V,电池电动势的温度系数()pET∂∂=-4.02×10-4V·K-1。(1)写出电池反应;(2)计算反应的标准平衡常数0K;(3)计算电池反应过程可逆热Qr,m;(4)求溶液中ZnCl2的平均离子活度因子γ±。解:(1)电池反应Zn(s)+2AgCl(s)2Ag(s)+ZnCl2(0.555mol·kg-1)(2)0E=0.2222+0.7620=0.9842Vln0K=0.98422298.15FR××=76.62950K=1.904×1033(3)ΔrSm=-2F×4.02×10-3=-77.59J·K-1·mol-1Qr=-298.15×77.59=-23.132kJ·mol-1(4)E=0E-32()ln2ZnClRTaF±=0.9842-0.02569×32ln2()ZnCla±=1.015Vln2()ZnCla±=-0.79932()ZnCla±=0.44962()ZnClb±=34×0.555=0.8810mol·kg-12()ZnClγ±=0.51037-16.写出下列各电池的电池反应。应用表7.7.1的数据计算25℃时各电池的电动势、各电池反应的摩尔Gibbs函数变及标准平衡常数,并指明的电池反应能否自发进行。(1)Pt│H2(g,100kPa)│HCl{a(HCl)=0.8}│Cl2(g,100kPa)│Pt(2)Zn│ZnCl2{a(ZnCl2)=0.6}│AgCl(s)│Ag(3)Cd│Cd2+{a(Cd2+)=0.01}┇┇Cl-{a(Cl-)=0.5}│Cl2(g,100kPa)│Pt解:(1)电池反应:H2(g,0p)+Cl2(g,0p)2HCl0E=1.3579V0rmGΔ=-2F×1.3579=-262.035kJ·mol-1E=1.3579-0.05916×lg(0.8)=1.3579+0.005733=1.3636VΔrGm=-2F×1.3636=-263.13kJ·mol-1董超编写3ln0K=26203529815.R.×=105.70960K=8.111×1045(2)电池反应:Zn(s)+2AgCl(s)ZnCl2+2Ag(s)0E=0.2222+0.7620=0.9842V0rmGΔ=-2F×0.9842=-189.922kJ·mol-1E=0.9842-0.059162×lg(0.6)=0.9842+0.006562=0.9908VΔrGm=-2F×0.9908=-191.20kJ·mol-1ln0K=18992229815R.×=76.61780K=1.882×1033(z=14.339×1016)(3)电池反应:Cd(s)+Cl2(g,0p)Cd2+(2Cda+)+Cl-(Cla−)0E=1.3579+0.4032=1.7611V0rmGΔ=-2F×1.7611=-339.841kJ·mol-1E=1.7611-0059162.lg(0.01×0.52)=1.7611+0.0769=1.8381VΔrGm=-2F×1.8381=-354.70kJ·mol-1ln0K=33984129815R.×=137.09790K=3.474×10597-18.25℃时,实验测定电池Pt│H2(g,100kPa)│HCl(b=0.1kg·mol-1)│Cl2(g,100kPa)│Pt的电动势为1.4881V。计算HCl溶液中的HCl平均离子活度因子。解:电池反应:H2(g)+Cl2(g)2HCl(b=0.1kg·mol-1)E=1.3579-2×0.05916lg(0.1γ±)a(HCl)=6.2978×10-3a(H+)=7.9359×10-2lg(0.1γ±)=13579148812005916...−×=-1.1004ln(0.01γ±)=-2.5342γ±=0.79367-19.电池Pb│PbSO4(s)│H2SO4(b=0.01kg·mol-1)│H2(g,0p)│Pt的电动势为0.1705V。已知25℃时,0fmGΔ(H2SO4,aq)=0fmGΔ(24SO−,aq)=-744.53kJ·mol-1,0fmGΔ(PbSO4,s)=-813.0kJ·mol-1。(1)写出上述电池的电极反应和电池反应;(2)求25℃时的0E(24SO−│PbSO4│Pb);(3)计算0.01kg·mol-1H2SO4溶液的a±和γ±。解:(1)阳极反应:Pb+24SO−(b=0.01kg·mol-1)PbSO4(s)+2e阴极反应:2H+(b=0.02kg·mol-1)+2eH2(g,0p)董超编写4电池反应:Pb(s)+H2SO4(b=0.01kg·mol-1)PbSO4(s)+H2(g,0p)(2)电极反应:PbSO4(s)+2ePb+24SO−0rmGΔ=-744.53+813.0=68.47kJ·mol-10E(24SO−│PbSO4│Pb)=-368.47102F×=-0.3548V(3)0.1705=0.3548+30.059162××lg24()aHSO±lg24()aHSO±=-2.076924()aHSO±=8.378×10-324()bHSO±=34×0.01=0.01587mol·kg-1γ±=0.52787-22.在电池Pt│H2(g,100kPa)│待测pH的溶液│1mol·dm-3KCl│Hg2Cl2(s)│Hg在25℃时测得电池电动势E=0.664V,试计算待测溶液的pH。解:E-=E+-E=0.2799-0.664=-0.3841VE=0.664=0.2799+0.05916pHE-=-0.05916pHpH=0.38410.05916=6.4937-24.将下列反应设计成原电池,并应用表7.7.1的数据计算25ºC时电池反应的0rmGΔ及0K(1)2Ag++H2(g)2Ag(s)+2H+(2)Cd+Cu2+Cu+Cd2+(3)Sn2++Pb2+Sn4++Pb(4)2Cu+Cu2++Cu解:(1)Pt│H2(g,p)│H+(Ha+)││Ag+(Aga+)│Ag(s)0E=0.7994V0rmGΔ=-2F×0.7994=-154.26kJ·mol-1ln0K=15426029815R.×=62.23260K=1.065×1027(2)Cd│Cd2+(2Cda+)││Cu2+(2Cua+)│Cu(s)0E=0.3417+0.4032=0.7449V0rmGΔ=-2F×0.7449=-143.74kJ·mol-1董超编写5ln0K=14374029815R.×=57.98880K=1.528×1025(3)Pt│Sn4+(4Sna+),Sn2+(2Sna+)││Pb2+(2Pba+)│Pb(s)0E=-0.1264-0.151=-0.2774V0rmGΔ=2F×0.2774=53.53kJ·mol-1ln0K=-5735729815R.×=-21.59500K=4.182×10-10(4)Pt│Cu2+(2Cua+),Cu+(Cua+)││Cu+(Cua+)│Cu(s)0E=0.521-0.153=0.368V0rmGΔ=-F×0.368=-35.51kJ·mol-1ln0K=3551029815R.×=14.32400K=1.663×106或Cu│Cu2+(2Cua+)││Cu+(Cua+)│Cu(s)0E=0.521-0.3417=0.1793V0rmGΔ=-2F×0.1793=-34.60kJ·mol-1ln0K=3460029815R.×=13.95810K=1.153×106(若0E(Cu2+│Cu)=0.337V,则0K=1.663×106)7-25.将反应Ag(s)+12Cl2(g,0p)AgCl(s)设计成原电池。已知在25℃时,0fmHΔ(AgCl,s)=-127.07kJ·mol-1,0fmGΔ(AgCl,s)=-109.79kJ·mol-1,标准电极电势0E(Ag+│Ag)=0.7994V,0E(Cl-│Cl2)=1.3579V。(1)写出电极反应和电池图示;(2)求25℃、电池可逆放电2F电荷量时的热Q;(3)求25℃时AgCl的活度积Ksp。解:(1)阳极反应:Ag(s)+Cl-(a)AgCl(s)+e阴极反应:12Cl2(g,0p)+eCl-(a)电池图示:Ag│AgCl(s)│Cl-(a)│Cl2(g,0p)│Pt董超编写6(2)Qr=2×(0fmHΔ-0fmGΔ)=-2×(127.07-109.79)=-34.56kJ·mol-1(3)电池反应:AgCl(s)⎯⎯→Ag+(Aga+)+Cl-(Cla−)设计电池Ag(s)│Ag+(Aga+)║Cl-(Cla−)│AgCl(s)│Ag(s)E=0E=-0fmGFΔ=10979096485.34=1.1379V0E(Cl-│AgCl│Ag)=0E(Cl-│Cl2)-0E=1.3579-1.1379=0.22V0E(Cl-│AgCl│Ag)=0E(Ag+│Ag)+RTFlnKsplgKsp=0.220.79940.05916−=-9.7944lnKsp=-22.55Ksp=1.605×10-107-28.已知25ºC时0E(Fe3+│Fe)=-0.036V,0E(Fe3+│Fe