护士入党申请书1500字【三篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。2、简述弹性力学的研究方法。答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。3、弹性力学中应力如何表示?正负如何规定?答:弹性力学中正应力用表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。4、简述平面应力问题与平面应变问题的区别。答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有x,y,xy。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v5、简述圣维南原理。如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。6、简述按应力求解平面问题时的逆解法。答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。(2)将次要的位移边界条件转化为应力边界条件处理。2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。题二(2)图(a))(),(),(222frrcybxyaxyx(b))(),(),(33223frrdycxyybxaxyx1.(8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。2.(8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿板厚均匀分布,只有平面应力分量x,y,xy存在,且仅为x,y的函数。平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分量x,y,xy存在,且仅为x,y的函数。3.(8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数求解,应力函数必须满足哪些条件?答:(1)相容方程:04(2)应力边界条件(假定全部为应力边界条件,ss):上在ssflmfmlysxyyxsyxx(3)若为多连体,还须满足位移单值条件。1、材料各向同性的含义是什么?“各向同性”在弹性力学物理方程中的表现是什么?(5分)答:材料的各向同性假定物体的物理性质在各个方向上均相同。因此,物体的弹性常数不随方向而变化。在弹性力学物理方程中,由于材料的各向同性,三个弹性常数,包括弹性模量E,切变模量G和泊松系数(泊松比)μ都不随方向而改变(在各个方向上相同)。2、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?(5分)答:按位移法求解时,u,v必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核u,v是否正确的条件。3、试述弹性力学研究方法的特点,并比较材料力学、结构力学与弹性力学在研究内容、方法等方面的异同。(12分)答:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在材料力学基础上研究杆系结构(如桁架、刚架等);弹性力学研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。在研究方法方面:理力考虑整体的平衡(只决定整体的V运动状态);材力考虑有限体ΔV的平衡,结果是近似的;弹力考虑微分体dV的平,结果比较精确。4、常体力情况下,用应力函数表示的相容方程形式为024422444yΦyxΦxΦ,请问:相容方程的作用是什么?两种解法中,哪一种解法不需要将相容方程作为基本方程?为什么?(13分)答:(1)连续体的形变分量(和应力分量)不是相互独立的,它们之间必须满足相容方程,才能保证对应的位移分量存在,相容方程也因此成为判断弹性力学问题解答正确与否的依据之一。(2)对于按位移求解(位移法)和按应力求解(应力法)两种方法,对弹性力学问题进行求解时位移法求解不需要将相容方程作为基本方程。(3)(定义)按位移求解(位移法)是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,并由此解出应变分量,进而再求出形变分量和应力分量。

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功