1§1大地测量学的定义和作用1.1大地测量学的定义y大地测量学是指在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息的一门学科。经典大地测量:地球刚体不变、均匀旋转的球体或椭球体;范围小。现代大地测量:空间测绘技术(人造地球卫星、空间探测器),空间大地测量为特征,范围大。第一章绪论21.2大地测量学的作用大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用。如交通运输、工程建设、土地管理、城市建设等大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着特殊作用。如地震、山体滑坡、交通事故等的监测与救援。大地测量是发展空间技术和国防建设的重要保障。如:卫星、导弹、航天飞机、宇宙探测器等发射、制导、跟踪、返回工作都需要大地测量作保证。3§2大地测量学基本体系和内容2.1大地测量学的基本体系应用大地测量、椭球大地测量、天文大地测量、大地重力测量、测量平差等;新分支:海样大地测量、行星大地测量、卫星大地测量、地球动力学、惯性大地测量。4y几何大地测量学(即天文大地测量学)基本任务:是确定地球的形状和大小及确定地面点的几何位置。主要内容:国家大地测量控制网(包括平面控制网和高程控制网)建立的基本原理和方法,精密角度测量,距离测量,水准测量;地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型等。5y物理大地测量学:即理论大地测量学基本任务:是用物理方法(重力测量)确定地球形状及其外部重力场。主要内容:包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法。y空间大地测量学:主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。62.2大地测量学的基本内容确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。研究月球及太阳系行星的形状及重力场。建立和维持国家和全球的天文大地水平控制网、工程控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。 研究为获得高精度测量成果的仪器和方法等。研究地球表面向椭球面或平面的投影数学变换及有关大地测量计算。7研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。现代大地测量的特征:⑴研究范围大(全球:如地球两极、海洋)⑵从静态到动态,从地球内部结构到动力过程。⑶观测精度越高,相对精度达到10-8~10-9,绝对精度可到达毫米。⑷测量与数据处理周期短,但数据处理越来越复杂。8§3大地测量学发展简史及展望3.1大地测量学的发展简史第一阶段:地球圆球阶段从远古至17世纪,人们用天文方法得到地面上同一子午线上两点的纬度差,用大地法得到对应的子午圈弧长,从而推得地球半径(弧度测量)第二阶段:地球椭球阶段从17世纪至19世纪下半叶,在这将近200年期间,人们把地球作为圆球的认识推进到向两极略扁的椭球。9•大地测量仪器:望远镜,游标尺,十字丝,测微器;•大地测量方法:1615年荷兰斯涅耳(W.Snell)首创三角测量法;•行星运动定律:1619年德国的开普勒(J.Kepler)发表了行星运动三大定律;•重力测量:1673年荷兰的惠更斯(C.Huygens)提出用摆进行重力测量的原理;•英国物理学家牛顿(L.Newton)提出地球特征:1)是两极扁平的旋转椭球,其扁率等于1/230;2)重力加速度由赤道向两极与sin2φ(φ——地理纬度)成比例地增加。10几何大地测量标志性成果:①长度单位的建立:子午圈弧长的四千万分之一作为长度单位,称为1m。②最小二乘法的提出:法国的勒让德(A.M.Legendre),德国的高斯(C.F.Gauss)。③椭球大地测量学的形成:解决了椭球数学性质与测量计算,正形投影方法。在这个领域,高斯、勒让德及贝塞尔(Bessel)作出了巨大贡献。④弧度测量大规模展开。在这期间主要有以英、法、西班牙为代表的西欧弧度测量,以及德国、俄国、美国等为代表的三角测量。⑤推算了不同的地球椭球参数。如贝赛尔、克拉克椭球参数。 11•物理大地测量标志性成就:①克莱罗定理的提出:法国学者克莱罗(A.C.Clairaut)假设地球是由许多密度不同的均匀物质层圈组成的椭球体,这些椭球面都是重力等位面(即水准面)。该椭球面上纬度φ的一点的重力加速度按下式计算:)sin1(2ϕβγγϕ⋅+=eαβ−=q25eaqγω2=12②重力位函数的提出:为了确定重力与地球形状的关系,法国的勒让德提出了位函数的概念。所谓位函数,即是有这种性质的函数:在一个参考坐标系中,引力位对被吸引点三个坐标方向的一阶导数等于引力在该方向上的分力。研究地球形状可借助于研究等位面。因此,位函数把地球形状和重力场紧密地联系在一起。③地壳均衡学说的提出:英国的普拉特(J.H.Pratt)和艾黎(G.B.Airy)几乎同时提出地壳均衡学说,根据地壳均衡学说可导出均衡重力异常以用于重力归算。④重力测量有了进展。设计和生产了用于绝对重力测量以及用于相对重力测量的便携式摆仪。极大地推动了重力测量的发展。13几何大地测量学进展:天文大地网的布设有了重大发展。全球三大天文大地网的建立(1800-1900印度,一等三角网2万公里,平均边长45公里;1911-1935美国一等7万公里;1924-1950苏联,7万多公里)因瓦基线尺出现,平行玻璃板测微器的水准仪及因瓦水准尺使用。 z第三阶段:大地水准面阶段从19世纪下半叶至20世纪40年代,人们将对椭球的认识发展到是大地水准面包围的大地体。14•物理大地测量在这阶段的进展:1.大地测量边值问题理论的提出:英国学者斯托克司(G.G.Stokes)把真正的地球重力位分为正常重力位和扰动位两部分,实际的重力分为正常重力和重力异常两部分,在某些假定条件下进行简化,通过重力异常的积分,提出了以大地水准面为边界面的扰动位计算公式和大地水准面起伏公式。后来,荷兰学者维宁·曼尼兹(F.A.VeningMeinesz)根据斯托克司公式推出了以大地水准面为参考面的垂线偏差公式。2.提出了新的椭球参数:赫尔默特椭球、海福特椭球、克拉索夫斯基椭球等。15第四阶段:现代大地测量新时期20世纪下半叶,以电磁波测距、人造地球卫星定位系统及甚长基线干涉测量等为代表的新的测量技术的出现,给传统的大地测量带来了革命性的变革,大地测量学进入了以空间测量技术为代表的现代大地测量发展的新时期。z主要技术:EDM:ElectronicDistanceMeasure;GPS:GlobalPositioningSystem;VLBI:VeryLongBaselineInterferometry;SLR:SatelliteLaserRanging;INS:InertialNavigationSystem16●我国高精度天文大地网的建立1951-1975年:一等三角点5万多个,全长7.5多万公里,二等锁,一等导线等,1972-1982年平差数据处理,建立1980国家大地坐标系。●我国高精度重力网的建立1981年开始绝对重力测量与相对重力测量,11个绝对重力点(基准点),40多个(基本点),重力网的平差,1985年国家重力基本网形成。173.2大地测量的展望全球卫星定位系统(GPS),激光测卫(SLR)以及甚长基线干涉测量(VLBI),惯性测量统(INS)是主导本学科发展的主要的空间大地测量技术。用卫星测量、激光测卫及甚长基线干涉测量等空间大地测量技术建立大规模、高精度、多用途的空间大地测量控制网,是确定地球基本参数及其重力场,建立大地基准参考框架,监测地壳形变,保证空间技术及战略武器发展的地面基准等科技任务的基本技术方案。精化地球重力场模型是大地测量学的重要发展目标。 12.1地球的运动从不同的角度,地球的运转可分为四类:天文学的基本概念(预备知识)–与银河系一起在宇宙中运动–在银河系内与太阳一起旋转–与其它行星一起绕太阳旋转(公转)–地球的自转(周日视运动)第二章坐标与时间系统2预备知识z天球的基本概念所谓天球,是指以地球质心O为中心,半径r为任意长度的一个假想的球体。在天文学中,通常均把天体投影到天球的球面上,并利用球面坐标来表达或研究天体的位置及天体之间的关系。建立球面坐标系统,如图2-1所示.z参考点、线、面和园3图2-1天球的概念4天轴与天极地球自转轴的延伸直线为天轴,天轴与天球的交点PN和PS称为天极,其中PN称为北天极,PS为南天极。天球赤道面与天球赤道通过地球质心O与天轴垂直的平面称为天球赤道面。天球赤道面与地球赤道面相重合。该赤道面与天球相交的大圆称为天球赤道。天球子午面与子午圈含天轴并通过任一点的平面,称为天球子午面.天球子午面与天球相交的大园称为天球子午圈。5时圈通过天轴的平面与天球相交的大圆均称为时圈。黄道地球公转的轨道面(黄道面)与天球相交的大园称为黄道。黄道面与赤道面的夹角称为黄赤交角,约为23.5度。黄极通过天球中心,且垂直于黄道面的直线与天球的交点,称为黄极。其中靠近北天极的交点称为北黄极,靠近南天极的交点称为南黄极。6春分点与秋分点黄道与赤道的两个交点称为春分点和秋分点。视太阳在黄道上从南半球向北半球运动时,黄道与天球赤道的交点称为春分点,用γ表示。在天文学中和研究卫星运动时,春分点和天球赤道面,是建立参考系的重要基准点和基准面赤经与赤纬地球的中心至天体的连线与天球赤道面的夹角称为赤纬,春分点的天球子午面与过天体的天球子午面的夹角为赤经。7地球的公转:开普勒三大运动定律:—运动的轨迹是椭圆,太阳位于其椭圆的一个焦点上;—在单位时间内扫过的面积相等;—运动的周期的平方与轨道的长半轴的立方的比为常数。8地球的自转的特征:(1)地轴方向相对于空间的变化(岁差和章动)地球自转轴在空间的变化,是日月引力的共同结果。假设月球的引力及其运行轨道是固定不变的,由于日、月等天体的影响,地球的旋转轴在空间围绕黄极发生缓慢旋转,类似于旋转陀螺,形成一个倒圆锥体(见下图),其锥角等于黄赤交角ε=23.5″,旋转周期为26000年,这种运动称为岁差,是地轴方向相对于空间的长周期运动。岁差使春分点每年向西移动50.3″ 9月球绕地球旋转的轨道称为白道,月球运行的轨道与月的之间距离是不断变化的,使得月球引力产生的大小和方向不断变化,从而导致北天极在天球上绕黄极旋转的轨道不是平滑的小园,而是类似园的波浪曲线运动,即地球旋转轴在岁差的基础上叠加周期为18.6年,且振幅为9.21″的短周期运动。这种现象称为章动。考虑岁差和章动的共同影响:真旋转轴、瞬时真天极、真天球赤道、瞬时真春分点。考虑岁差的影响:瞬时平天极、瞬时平天球赤道、瞬时平春分点。1011瞬时真北天极瞬时真北天极瞬时真春分点瞬时真春分点瞬时真天球赤道瞬时真天球赤道瞬时平北天极瞬时平北天极瞬时平天球赤道瞬时平天球赤道瞬时平春分点瞬时平春分点非惯性坐标非惯性坐标瞬时平天球坐标系瞬时平天球坐标系瞬时真天球坐标系瞬时真天球坐标系12(2)地轴相对于地球本身相对位置变化(极移) 地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极移。某一观测瞬间地球极所在的位置称为瞬时极,某段时间内地极的平均位置称为平极。地球极点的变化,导致地面点的纬度发生变化。天文联合会(IAU)和大地测量与地球物理联合会(IUGG)建议采用国际上5个纬度服务(ILS)站以1900~1905年的平均纬度所确定的平极作为基准点,通常称为国际协议原点CIO(ConventionalInternationalOrigin)13国际极移服务(IPMS)和国际时间局(BIH)等机构分别用不同的方法得到地极原点。与CIO相应的地球赤道面称为平赤道面或协议赤道面。14(3)地球自转速度变化(日长变化) 地球自转不是均匀的,