常数项级数:是发散的调和级数:等差数列:等比数列:nnnnqqqqqnn1312112)1(32111112级数审敛法:散。存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法nnnnnnnnnnsuuusUUulim;3111lim2111lim1211。的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim)0,(nnnnnnnnurrusuuuuuuuuuuu绝对收敛与条件收敛:时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121pnpnnnuuuuuuuupnnnn幂级数:0010)3(lim)3(1111111221032RRRaaaaRRxRxRxRxaxaxaaxxxxxxxnnnnnnnn时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 函数展开成幂级数:nnnnnnnnnxnfxfxffxfxRxfxxnfRxxnxfxxxfxxxfxf!)0(!2)0()0()0()(00lim)(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:一些函数展开成幂级数:)()!12()1(!5!3sin)11(!)1()1(!2)1(1)1(121532xnxxxxxxxnnmmmxmmmxxnnnm 欧拉公式:2sin2cossincosixixixixixeexeexxixe 或三角级数:。上的积分=在任意两个不同项的乘积正交性:。,,,其中,0],[cos,sin2cos,2sin,cos,sin,1cossin)sincos(2)sin()(001010nxnxxxxxxtAbAaaAanxbnxaatnAAtfnnnnnnnnnnnn傅立叶级数:是偶函数 ,余弦级数:是奇函数 ,正弦级数:(相减)(相加) 其中,周期nxaaxfnnxdxxfabnxbxfnxdxxfbannxdxxfbnnxdxxfanxbnxaaxfnnnnnnnnnnncos2)(2,1,0cos)(20sin)(3,2,1nsin)(201241312116413121124614121851311)3,2,1(sin)(1)2,1,0(cos)(12)sincos(2)(00022222222222222210周期为l2的周期函数的傅立叶级数:llnllnnnnndxlxnxflbndxlxnxflallxnblxnaaxf)3,2,1(sin)(1)2,1,0(cos)(12)sincos(2)(10 其中,周期