高等数学常用公式大全

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高数常用公式平方立方:22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca                    21221)(9)()(),(2)nnnnnnabcababaababbn   三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tanAtanB-1tanBtanAtan(A-B)=tanAtanB1tanBtanAcot(A+B)=cotAcotB1-cotAcotBcot(A-B)=cotAcotB1cotAcotB倍角公式tan2A=Atan12tanA2Sin2A=2SinA•CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·tan(3+a)·tan(3-a)半角公式sin(2A)=2cos1Acos(2A)=2cos1Atan(2A)=AAcos1cos1cot(2A)=AAcos1cos1tan(2A)=AAsincos1=AAcos1sin和差化积sina+sinb=2sin2bacos2basina-sinb=2cos2basin2bacosa+cosb=2cos2bacos2bacosa-cosb=-2sin2basin2batana+tanb=babacoscos)sin(积化和差sinasinb=-21[cos(a+b)-cos(a-b)]cosacosb=21[cos(a+b)+cos(a-b)]sinacosb=21[sin(a+b)+sin(a-b)]cosasinb=21[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosasin(2-a)=cosacos(2-a)=sinasin(2+a)=cosacos(2+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=aacossin万能公式sina=2)2(tan12tan2aacosa=22)2(tan1)2(tan1aatana=2)2(tan12tan2aa其他非重点三角函数csc(a)=asin1sec(a)=acos1双曲函数sinh(a)=2e-e-aacosh(a)=2ee-aatgh(a)=)cosh()sinh(aa其它公式a•sina+b•cosa=)b(a22×sin(a+c)[其中tanc=ab]a•sin(a)-b•cos(a)=)b(a22×cos(a-c)[其中tan(c)=ba]1+sin(a)=(sin2a+cos2a)21-sin(a)=(sin2a-cos2a)2公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:2±α及23±α与α的三角函数值之间的关系:sin(2+α)=cosαcos(2+α)=-sinαtan(2+α)=-cotαcot(2+α)=-tanαsin(2-α)=cosαcos(2-α)=sinαtan(2-α)=cotαcot(2-α)=tanαsin(23+α)=-cosαcos(23+α)=sinαtan(23+α)=-cotαcot(23+α)=-tanαsin(23-α)=-cosαcos(23-α)=-sinαtan(23-α)=cotαcot(23-α)=tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+B•sin(ωt+φ)=)cos(222ABBA×sin)cos(2)Bsininarcsin[(Ast22ABBA特殊角的三角函数值:06432π232π)(f)0()30()45()60()90()180()270()360(sin02/12/22/310-10cos12/32/22/10-101tan03/113不存在0不存在0cot不存在313/10不存在0不存在等价代换:(1)xsinx~(2)xtanx~(3)xarcsinx~(4)xarctanx~(5)2x21cosx1~(6)x)x1(ln~(7)x1ex~(8)ax1)x1(a~基本求导公式:(1) 0)(C,C是常数(2)1)(xx(3)aaaxxln)((4)axxaln1)(log(5)xxcos)(sin(6)xxsin)(cos(7)xxx22seccos1)(tan(8)xxx22cscsin1)(cot(9)xxxtan)(sec)(sec(10)xxxcot)(csc)(csc(11))(arcsinx211x(12)211)(arccosxx(13)211)(arctanxx(14)21(arccot)1xx(15)x21x)((16)2x1x1)(基本积分公式:(1)0dxC(2)为常数kCkxkdx(3)111Cxdxx(4)Cxdxx||ln1(5)Caadxaxxln(6)Cedxexx(7)Cxxdxsincos(8)Cxxdxcossin(9)Cxxdxxdxtanseccos22(10)Cxxdxxdxcotcscsin22(11)Cxxdxxsectansec(12)Cxxdxxcsccotcsc(13)Cxxdxarctan12或(Cxarcxdxcot12)(14)Cxxdxarcsin12或(Cxxdxarccos12)(15)Cxxdx|cos|lntan,(16)Cxxdx|sin|lncot,(17)Cxxxdx|tansec|lnsec,(18)Cxxdxxc|cotcsc|lnsc,一些初等函数:两个重要极限:·正弦定理:RCcBbAa2sinsinsin·余弦定理:Cabbaccos2222·反三角函数性质:arcctgxarctgxxx2arccos2arcsin   高阶导数公式——莱布尼兹(Leibniz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv中值定理与导数应用:xxarthxxxarchxxxarshxeeeechxshxthxeechxeeshxxxxxxxxx11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim1sinlim0exxxxxx拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()())(()()(曲率:.1;0.)1(limMsMM:.,13202aKaKyydsdsKMMsKtgydxydss的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:定积分的近似计算:bannnbannbanyyyyyyyynabxfyyyynabxfyyynabxf)](4)(2)[(3)(])(21[)()()(1312420110110抛物线法:梯形法:矩形法:定积分应用相关公式:babadttfabdxxfabykrmmkFApFsFW)(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1=aacbb242;x2=aacbb242(b2-4ac0)根与系数的关系:x1+x2=-ab,x1·x2=ac

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功