《量子力学》考试知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。2.领会:微观粒子的波-粒二象性、德布罗意波。第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1.领会:定态、定态性质2.简明应用:定态薛定谔方程第三章:一维定态问题2一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系3(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodingerequation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodingerequation的矩阵形式1.简明应用:平均值、本征方程和Schrodingerequation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想43.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。(二)、变分法1.领会:变分原理2.简明应用:用Ritz变分法求体系基态能级及近似波函数(三)、量子跃迁1.识记:跃迁、跃迁几率、自发辐射、受激辐射、费米黄金规则2.领会:跃迁理论与不含时微扰的关系3.简明应用:简单微扰体系跃迁几率的计算、常微扰、周期微扰第七章自旋与全同粒子一、考核知识点:(一)、电子自旋(二)、总角动量(三)、碱金属的双线结构(四)、自旋单态和三重态(五)、全同粒子交换不变性二、考核要求:(一)、电子自旋1.识记:自旋存在的实验事实、二分量波函数2.领会:电子自旋的内禀磁矩、对易关系、泡利表象、矩阵表示(泡利矩阵)、自旋态的表示3.简明应用:考虑自旋后,状态和力学量的描述、考虑自旋后,电子在中心势场中的薛定谔方程(二)、总角动量1.识记:自旋-轨道耦合52.领会:总角动量、力学量完全集22(,,,)zHljj的共同本征值问题(三)、碱金属的双线结构1.领会:碱金属原子光谱的双线结构及反常塞曼效应的现象及形成原因(四)、自旋单态和三重态1.领会:自旋单态和三重态2.简明应用:在)S,S(z2z1和)Sˆ,Sˆ(z2表象中两自旋为21的粒子的自旋波函数(五)、全同粒子交换不变性1.领会:全同粒子体系与波函数的交换对称性、费米子和玻色子体系的描述、泡利不相容原理2.简明应用:两全同粒子体系、全同粒子体系波函数的结构1、波函数与薛定谔方程理解波函数的统计解释,态迭加原理,薛定鄂方程,粒子流密度和粒子数守恒定律定态薛定谔方程。掌握一维无限深势阱,线性谐振子。2、力学量的算符表示理解算符与力学量的关系。掌握动量算符和角动量算符,厄米算符本征函数的正交性,算符的对易关系,两力学量同时有确定值的条件测不准关系,力学量平均值随时间的变化守恒定律。氢原子3、态和力学量的表象理解态的表象,掌握算符的矩阵表示,量子力学公式的矩阵表述么正变换,了解狄喇克符号,线性谐振子与占有数表象。4、定态近似方法掌握非简并定态微扰理论,简并情况下的微扰理论,理解薛定鄂方程的6变分原理及变分法。5、含时微扰论掌握与时间有关的微扰理论,跃迁几率,光的发散和吸收及选择定则。6、自旋与角动量理解电子自旋,掌握电子的自旋算符和自旋函数。7、全同粒子体系理解两个角动量的耦合,光谱的精细结构和全同粒子的特性。掌握全同粒子体系的波函数,泡利原理,两个电子的自旋函数。了解氦原子(微扰法)。周世勋,《量子力学教程》,高等教育出版社,1979年第1版曾谨言,《量子力学教程》,科学出版社,2003年版参考书目:《量子力学导论》,北京大学出版社,曾谨言我认为考试前要清楚报考单位对《量子力学》这门课的基本要求以及主要考查内容是什么,应当按照其要求出发,有目的性、针对性的进行的复习。中科院《量子力学》考试的重点是要求熟练把握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。把握量子力学中一些非凡的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。再者,中科院对量子力学这门课考查主要包括以下9大内容:①波函数和薛定谔方程②一维势场中的粒子③力学量用算符表示④中心力场⑤量子力学的⑥自旋⑦定态问题的近似方法⑧量子跃迁⑨多体问题,复习过程中应当主要对这些内容下功夫。第一阶段:首先按照中科院硕士研究生入学考试《量子力学》考试大纲中的要求将参考书目看了一遍。中科院《量子力学考试大纲》中指定的参考书目是《量子力学教程》,这本书是由曾谨言编著的。此阶段看书以理解为主,不必纠缠于细节,将不懂的知识点做上记号。7第二阶段:我对大纲中要求了解的内容,熟练把握的内容以及理解的内容进行了分类,并且按相关要求对将这门课进行了第二轮复习。另外我认为在这一遍复习中一定要把历年试题弄到手并且仔细分析,因为真题体现了命题单位的出题特点以及出题趋势等。另外,我认为真题要比大纲更有用,因为从大纲中看不出的有价值的东西可以从真题中得到。当然,需要注重的是,单纯把握真题也是不理智的做法,假如一个考生仅仅把握了历年真题的内容,那么考试后他会得出这样一个结论:今年的题真偏。其实,不是题偏,而是他没有把参考书上的东西完全把握好。所以在这个阶段中我仍然以看指定的参考书为主,着重解决了在第一遍复习中留下的疑问和在做真题中自己不会的题目。对了,此轮复习一定要做一份笔记,将主要内容归纳出一份比较简洁的提纲,以便于下轮复习。第三阶段:将专业课过第三遍,这一轮注重结合上一轮的笔记和提纲有重点的,系统的理解和记忆,由于专业课要求答的深入,所以可以找一些专业方面的期刊杂志来看下,扩大下自己的视野范围。这一阶段大家也可以找些习题集来做下,不断巩固自己把握了的知识点。第四阶段:这一轮要将参考书快速翻几遍,以便对整个知识体系有全面的把握并且牢记于心,同时要进行查缺补漏,不要放过一个疑点,要注重的是此时不能执着于细小的知识点,要懂得抓大放小,把握最重要的知识点。另外可以根据对历年试题的分析以及对本年度的专业考试做出一些猜测,并对考试的时间安排及如何进行考中心理调节做下演练。(中科大2003)一、试证明:(1)投影算符||nnP是厄密算符;它在任意态|中的平均值是正定的,即0||P。(2)设|是归一化波函数,对于线性厄密算符A以下等式成立tAiHAdtAdi],[。证明:(1)因为PnnnnP|||)(|所以P是厄密算符8或***||||||||PnnnnP0|||||||2nnnP(2)因为AA,则tAtAAtdtAd,,,再由S-eq得tAiHAdtAdi],[或因为dxAA*所以dxtAdxHAAHidxtAdxAHidxHAidxtAdxtAdxAtdtAd********)(111即tAiHAdtAdi],[二、对于一维谐振子,求消灭算符a的本征态|,将其表示成各能量本征态n|的线性叠加。已知1|.|nnna。解:设0||nnnC由于||a且利用1|.|nnna得001|||nnnnnnCnaCa0|nnnC以|1n左乘上式并利用nnnn|得91nnCnC依次递推得0!CnCnn由归一化条件nnnnnCC1!|2202因为2!2ennnieeC2210为实数,可取为0所以021|!|2nnnne三、给定),(方向的单位矢量)cos,sinsin,cos(sinn,在z表象中求nn的本征值和归一化本征矢。解:因为cossinsincossinzyxn所以cossinsincosiineenn的本征值为1由本征方程cossinsincosiieebaba求得对于1ie2sin2cos1或2/2/12sin2cosiiee对于1ie2cos2sin1或2/2/12cos2siniiee四、设一定域电子(作为近似模型,不考虑轨道运动),处于沿x方向的均匀磁场B中,哈密顿量为xLxcBeH2ceBL2拉莫尔(Larmor)频率10设0t时,电子自旋“向上”(2/zS)。求0t时(1)电子自旋态)(t;(2)电子自旋S的平均值。解:(1)方法一令)()()(tbtat初始条件01)0()0()0(ba由薛定谔方程babadtdiL得aibbiaLL)(baibaL)(baibaL积分得titiLLeebatbta)]0()0([)()(titiLLeebatbta)]0()0([)()(由此可得titbttaLLsin)(cos)(tittLLsincos)(方法二体系能量本征态即x的本征态,本征值和本征态分别为11211LxEE11211LxEE电子自旋初态11)(2101)0(

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功