第2章_轴对称_复习课_课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。(一)轴对称和轴对称图形1、概念(二)几个轴对称图形:1、线段线段是轴对称图形,对称轴是线段的垂直平分线。线段垂直平分线上的点到线段两端的距离相等;到线段两端的距离相等的点在线段的垂直平分线上。2、角:角是轴对称图形,对称轴是角平分线所在的直线。角平分线上的点到角的两边的距离相等;到角的两边的距离相等的点在这个角的平分线上。3、等腰三角形4等边三角形5、长方形6、圆等腰梯形(三)、轴对称的性质:成轴对称的两个图形全等;如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。ADBCEF例1.如图,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD折过来,C落在C′的位置,(1)在图中画出点C′,连结BC′;(2)如果BC=4,求BC′的长。DCBA由于翻折后的图形与翻折前的图形关于折痕对称;所以C、C′关于直线AD对称,AD垂直平分CC′,C′又处于对称位置的元素(线段、角)对应相等,这为问题解决提供了条件。DCBAC′解:(1)画CO垂直AB,并延长到C′,使得OC′=OC,点C′即为所求。O(2)连结C′D,由对称性得CD=CD′,∠CDA=∠CDA=60°;所以∠BDC=60°,所以,△C′BD是等边三角形,所以,BC′=BD=2。DCBAC′小结:1、翻折变换后得到的图形与原图形关于折痕对称;对应点的连线段被折痕垂直平分;2、解决翻折问题,要注意隐含在图形中的相等线段、相等角,全等三角形;因为一切处于对称位置的线段相等,角相等,三角形全等。3、从对称角度完善图形,让隐含条件显现出来,这是这部分题目添加辅助线的一个重要规律。DCBA例2.如图,A,B,C三点在同一直线上,分别以AB,BC为边在AC同侧作等边⊿ABD和等边⊿BCE,AE交BD于点F,DC交BE于点G,①求证:AE=DCDABECFG例2.如图,A,B,C三点在同一直线上,分别以AB,BC为边在AC同侧作等边⊿ABD和等边⊿BCE,AE交BD于点F,DC交BE于点G②求证:BF=BGDABECFG例2.如图,A,B,C三点在同一直线上,分别以AB,BC为边在AC同侧作等边⊿ABD和等边⊿BCE,AE交BD于点F,DC交BE于点G,③连接FG,求证:FG//ACDABECFG例2.如图,A,B,C三点在同一直线上,分别以AB,BC为边在AC同侧作等边⊿ABD和等边⊿BCE,AE交BD于点F,DC交BE于点G④求∠AHC的度数。DABECFGH●ABC·P1例3.已知在等边△ABC中,如果P是△ABC所在平面上的一点,且△PAB、△PBC、△PCA都是等腰三角形,那么这样的点P的位置共有几个?试一一画出。例4.如图,△ABC各顶点的坐标分别为A(0,2),B(1,2),C(1,4)。(1)分别作出△ABC关于直线m:x=-2和直线n:y=x对称的图形。(2)你能发现它们的对应顶点的坐标之间分别有什么关系吗?

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功