高数微积分公式大全

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高等数学微积分公式大全一、基本导数公式⑴0c⑵1xx⑶sincosxx⑷cossinxx⑸2tansecxx⑹2cotcscxx⑺secsectanxxx⑻csccsccotxxx⑼xxee⑽lnxxaaa⑾1lnxx⑿1loglnxaxa⒀21arcsin1xx⒁21arccos1xx⒂21arctan1xx⒃21arccot1xx⒄1x⒅12xx二、导数的四则运算法则uvuvuvuvuv2uuvuvvv三、高阶导数的运算法则(1)nnnuxvxuxvx(2)nncuxcux(3)nnnuaxbauaxb(4)()0nnnkkknkuxvxcuxvx四、基本初等函数的n阶导数公式(1)!nnxn(2)naxbnaxbeae(3)lnnxxnaaa(4)sinsin2nnaxbaaxbn(5)coscos2nnaxbaaxbn(6)11!1nnnnanaxbaxb(7)11!ln1nnnnanaxbaxb五、微分公式与微分运算法则⑴0dc⑵1dxxdx⑶sincosdxxdx⑷cossindxxdx⑸2tansecdxxdx⑹2cotcscdxxdx⑺secsectandxxxdx⑻csccsccotdxxxdx⑼xxdeedx⑽lnxxdaaadx⑾1lndxdxx⑿1loglnxaddxxa⒀21arcsin1dxdxx⒁21arccos1dxdxx⒂21arctan1dxdxx⒃21arccot1dxdxx六、微分运算法则⑴duvdudv⑵dcucdu⑶duvvduudv⑷2uvduudvdvv七、基本积分公式⑴kdxkxc⑵11xxdxc⑶lndxxcx⑷lnxxaadxca⑸xxedxec⑹cossinxdxxc⑺sincosxdxxc⑻221sectancosdxxdxxcx⑼221csccotsinxdxxcx⑽21arctan1dxxcx⑾21arcsin1dxxcx八、补充积分公式tanlncosxdxxccotlnsinxdxxcseclnsectanxdxxxccsclncsccotxdxxxc2211arctanxdxcaxaa2211ln2xadxcxaaxa221arcsinxdxcaax22221lndxxxacxa九、下列常用凑微分公式积分型换元公式1faxbdxfaxbdaxbauaxb11fxxdxfxdxux1lnlnlnfxdxfxdxxlnuxxxxxfeedxfedexue1lnxxxxfaadxfadaaxuasincossinsinfxxdxfxdxsinuxcossincoscosfxxdxfxdxcosux2tansectantanfxxdxfxdxtanux2cotcsccotcotfxxdxfxdxcotux21arctanarcnarcn1fxdxftaxdtaxxarctanux21arcsinarcsinarcsin1fxdxfxdxxarcsinux十、分部积分法公式⑴形如naxxedx,令nux,axdvedx形如sinnxxdx令nux,sindvxdx形如cosnxxdx令nux,cosdvxdx⑵形如arctannxxdx,令arctanux,ndvxdx形如lnnxxdx,令lnux,ndvxdx⑶形如sinaxexdx,cosaxexdx令,sin,cosaxuexx均可。十一、第二换元积分法中的三角换元公式(1)22axsinxat(2)22axtanxat(3)22xasecxat【特殊角的三角函数值】(1)sin00(2)1sin62(3)3sin32(4)sin12)(5)sin0(1)cos01(2)3cos62(3)1cos32(4)cos02)(5)cos1(1)tan00(2)3tan63(3)tan33(4)tan2不存在(5)tan0(1)cot0不存在(2)cot36(3)3cot33(4)cot02(5)cot不存在十二、重要公式(1)0sinlim1xxx(2)10lim1xxxe(3)lim()1nnaao(4)lim1nnn(5)limarctan2xx(6)limtan2xarcx(7)limarccot0xx(8)limarccotxx(9)lim0xxe(10)limxxe(11)0lim1xxx(12)00101101lim0nnnmmxmanmbaxaxanmbxbxbnm(系数不为0的情况)十三、下列常用等价无穷小关系(0x)sinxxtanxxarcsinxxarctanxx211cos2xxln1xx1xex1lnxaxa11xx十四、三角函数公式1.两角和公式sin()sincoscossinABABABsin()sincoscossinABABABcos()coscossinsinABABABcos()coscossinsinABABABtantantan()1tantanABABABtantantan()1tantanABABABcotcot1cot()cotcotABABBAcotcot1cot()cotcotABABBA2.二倍角公式sin22sincosAAA2222cos2cossin12sin2cos1AAAAA22tantan21tanAAA3.半角公式1cossin22AA1coscos22AA1cossintan21cos1cosAAAAA1cossincot21cos1cosAAAAA4.和差化积公式sinsin2sincos22abababsinsin2cossin22abababcoscos2coscos22abababcoscos2sinsin22abababsintantancoscosababab5.积化和差公式1sinsincoscos2ababab1coscoscoscos2ababab1sincossinsin2ababab1cossinsinsin2ababab6.万能公式22tan2sin1tan2aaa221tan2cos1tan2aaa22tan2tan1tan2aaa7.平方关系22sincos1xx22secn1xtax22csccot1xx8.倒数关系tancot1xxseccos1xxcsin1csxx9.商数关系sintancosxxxcoscotsinxxx十五、几种常见的微分方程1.可分离变量的微分方程:dyfxgydx,11220fxgydxfxgydy2.齐次微分方程:dyyfdxx3.一阶线性非齐次微分方程:dypxyQxdx解为:pxdxpxdxyeQxedxc

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功