1aaaaaaaa2111222110110111463112221232110111111112221100110111aaaa当01a时,,2),,(321r,3),,,,,(321321r321,,与321,,不等价当01a时,,3),,,,,(),,(321321321rr再求),,(321r:100110111111110111111112221),,(321aaaTTT3),,(321r1a时321321,,,,例6、设(I)和(II)都是4元齐次线性方程组,(I)有基础解系,11011,01012,01103(II)有基础解系,10101,01112求(I)和(II)的公共解。解:(II)的解有2211cc的形式2211cc是公共解3212211,,cc3),,(),,,(3212211321rccr21212111221222113213000100010001001111100011),,,(cccccccccccccc2于是:2211cc是公共解,312cc公共解1323312111ccc1c任意例7、设(I)和(II)都是3元非齐次方程组,(I)有通解2122111,,cccc任意,(II)有通解cc,2任意,其中,)1,0,1(1T,)2,1,0(2T,)0,1,1(1T,)1,2,1(2T,)2,1,1(T求(I)与(II)的公共解。解:思路:公共解一定是(II)的解,从而有c2的形式,并且满足,,2112c由此决定cccccccc210012101111210121111),,(1221得2/1,021cc于是公共解只有一个:T)3,2/3,2/1(2/12例8、设A是nm矩阵,B是sm矩阵,证明存在sn矩阵C满足)()|(ArBArACB证:记),,,,(),,,,(2121snBA“”若,ACB则,,,,,,,2121ns从而),,,(),,,,,,,(212121nsnrr即)()|(ArBAr“”当)()|(ArBAr时,,,,,,,,2121ns用矩阵分解,存在sn矩阵C,使得ACB3、向量组的线性相关性(1)定义与意义定义:对n维向量组,,,,21s如果存在不全为0的一组数,,,,21sccc使得02211ssccc3则称s,,,21线性相关,否则就称它们线性无关。意义:1s时相关即,0无关即0。1s时s,,,21线性相关指存在i可用其余向量线性表示,线性无关指每个向量i都不能用其它向量线性表示用齐次方程组看,记),,,,(21sA则s,,,21线性相关0AX有非零解。(2)判别1)两个向量,的相关性:若),,,,(21naaa),,,,(21nbbb则,线性相关nnbababa:::22112)向量的个数大于维数则一定线性相关n个n维向量n,,,21线性相关0,,,21n3)线性无关向量组的部分组一定线性无关(有部分组线性相关的向量组一定线性相关;含零向量的向量组一定线性相关)4)当s,,,21线性无关时,,,,,21s线性相关s,,,21(无)!5)若,,,,,,,2121st且,st则t,,,21一定线性相关6)s,,,21线性相关srs),,,(21(无)(=)(3)典型例题例1、设s,,,21和t,,,21都是线性无关的n维向量组。证明ts,,,,,,,2121线性相关存在非零向量s,,,,21且t,,,21。证:由于ts,,,,,,,2121线性相关,存在tsdddccc,,,,,,,2121不全为0,使得022112211ttssdddccc记,2211ssccc即4)(11ttdd则0(否则tsdddccc,,,,,,,2121全为0)且,,,,21st,,,21若,0,2211sscccttdd11则sccc,,,21不全为0,tddd,,,21不全为0,并且022112211ttssdddccc从而ts,,,,,,,2121线性相关例2、设是一个n维列向量,A是n阶矩阵,存在正整数,k使得,01kA而,0kA证明1,,,kAA线性无关。证:用反证法证明。设有110,,,kccc不全为0,使得,01110kkAcAcc设lc是110,,,kccc中第一个不为0的数,则,011kkllAcAc用1lkA乘此式,得,01klAc而,01kA于是,0lc矛盾。例3、设l,,,21是齐次方程组0AX的基础解系,sl,,,,,,,2121线性无关,证明sAAA,,,21线性无关证:设02211ssAcAcAc即0)(2211sscccA于是ssccc2211是0AX的解,从而lssccc,,,212211设llsskkkccc22112211即022112211ssllccckkk由于sl,,,,,,,2121线性无关,得5011sskkcc4、向量组的极大无关组与秩讨论向量组s,,,21的秩是对s,,,21相关程度的定量讨论。s,,,21的极大无关组即一个部分组(I),它满足1)(I)线性无关2)(I)再扩大就相关(即每个i(I))),,,(21sr(I)包含向量的个数因此),,,(21sr即s,,,21的线性无关部分组最多可包含向量的个数。当rrs),,,(21时,s,,,21存在部分组线性无关,它含有r个向量,而且是向量数大于r的部分组一定相关。极大无关组和秩可推广到向量集合上,例如齐次方程组0AX的基础解系就是其解集合J的极大无关组。例26、设非齐次方程组AX有无穷多解,证明其解集合J的秩为1)(Arn证:用定义做,构造J的极大无关组,取0是AX的一个解,取l,,1是0AX的一个基础解系,),(Arnl则l,,1线性无关并且,,,!10l从而01,,,l线性无关记,,,2,1,0liii则i都是AX的解并且,,,,,,,,,021021ll从而,1),,,,(),,,,(021021lrrll于是021,,,,l线性无关又对AX的任意一个解,6,,01l,,从而,,,,01l从而01,,,l是J的一个极大无关组1)(1)(ArnlJr5、有关秩的不等式1)},min{),,,(021nsrs},min{)(0nmAr2)当st,,,,,2121时),,,(),,,(2121strr3))}(),(min{)(BrArABr4)当A可逆时,)()(BrABr(若A列满秩时)当B可逆时,)()(ArABr(B行满秩时)5)当0AB时,nBrAr)()(6)1)(01)(1)(*)(nArnArnArnAr7)nm矩阵A的秩为1TA其中,分别是nm,维非零列向量例27、设s,,,21是n维向量组,A是nm矩阵,则(A)若s,,,21相关,则sAAA,,,21相关(B)若s,,,21相关,则sAAA,,,21无关(C)若s,,,21无关,则sAAA,,,21相关(D)若s,,,21无关,则sAAA,,,21无关7解:(A)可用定义做,s,,,21相关,则存在sccc,,,21不全为0,使得02211ssccc用A乘上式,得02211ssAcAcAc从而sAAA,,,21相关(A)对,(B)不对对(C),(D)都可以EA或0为反例来排除此题若从秩的角度看,就更加通透了),,,(),,,(2121ssAAAA从而),,,(),,,(2121ssrAAAr如果s,,,21相关,即,),,,(21srs于是sAAArs),,,(21,即sAAA,,,21相关如果s,,,21无关,则,),,,(21srs但只解得出sAAArs),,,(21不能确定“=”还是“”如果A可逆,或A列满秩,则),,,(),,,(2121ssrAAAr此时s,,,21与sAAA,,,21有一致的相关性例28、已知321,,是齐次方程组的基础解系,则()也是0AX的基础解系(A)32123221,,,(B)3221,(C)1332212,2,2(D)321321321553,232,解:(C)首先可排除(A)和(B),因为0AX的基础解系应含有3个解。(A)中有4个,(B)8只有2个。(C),(D)都含有3个向量,并且这些向量都是0AX的解,因此,只用判断哪一组向量线性无关。看(C),用秩来判断,利用矩阵分解120012201),,()2,2,2(321133221因为120012201可逆(行列式为9),所以3),,()2,2,2(321133221rr得出1332212,2,2线性无关一般的,当s,,,21线性无关,而,,,,,,,2121ss有srrss),,,(),,,(2121怎么判断s,,,21相关性?可用矩阵分解法Css),,,(),,,(2121其中C是s阶矩阵当C可逆时,则srrss),,,(),,,(2121从而s,,,21无关若C不可逆,则,)(sCr则sCrrs)(),,,(21从而s,,,21相关如果用性质:当A列满秩时,)()(BrABrs,,,21线性无关,即),,,(21s的秩为s,列满秩,于是)(),,,(21C