磁粉检测第3章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第3章磁化电流、磁化方法、磁化规范2013年7月23日梁国利河南特种设备无损检测考委会考评员磁粉组组长(RT、UT、MT、PT、ECT)-Ⅲ级TOFD-Ⅱ级联系方式:13676930185@139.com1磁粉探伤基础知识1.1磁粉探伤与磁性检测(分类方法)漏磁场探伤:是利用铁磁性材料或工件磁化后,在表面和近表面如有不连续性(材料的均质状态即致密性受到破坏)存在,则在不连续性处磁力线离开工件和进入工件表面发生局部畸变产生磁极,并形成可检测的漏磁场进行探伤的方法。漏磁场探伤包括磁粉探伤和利用检测元件探测漏磁场。其区别在于,磁粉探伤是利用铁磁性粉末-磁粉,作为磁场的传感器,即利用漏磁场吸附施加在不连续性处的磁粉聚集形成磁痕,从而显示出不连续性的位置、形状和大小。利用检测元件探测漏磁场的磁场传感器有磁带、霍尔元件、磁敏二极管和感应线圈等。利用检测元件检测漏磁场:录磁探伤法、感应线圈探伤法、霍尔元件检测法、磁敏二极管探测法。1.2磁粉探伤MagneticParticleTesting,简称MT基本原理是:铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。如图1-1所示。1.3磁粉探伤的适用性和局限性适用性:磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。磁粉检测可对原材料、半成品、成品工件和在役的零部件检测探伤,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。马氏体不锈钢和沉淀硬化不锈钢具有磁性,可进行MT。MT可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。局限性:MT不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。1.4磁粉探伤方法与其他表面探伤方法的比较P.6表1-1磁粉检测在压力容器定期检验中的重要性1.5磁粉探伤中使用的单位、SI单位与CGS制的换算关系磁场强度HA/mOe磁通量ΦWbMx磁感应强度BTGsmAmAOe/80/104113MxWb8101GsT41012磁粉探伤的物理基础2.1磁粉探伤中的相关物理量2.1.1磁的基本现象磁性、磁体、磁极、磁化磁性:磁铁能够吸引铁磁性材料的性质叫磁性。磁体:凡能够吸引其他铁磁性材料的物体叫磁体。磁极:靠近磁铁两端磁性特别强吸附磁粉特别多的区域称为磁极。每一小块磁体总有两个磁极。磁化:使原来没有磁性的物体得到磁性的过程叫磁化。2.1.2磁场:具有磁性作用的空间磁场的特征、显示和磁力线磁场的特征:是对运动的电荷(或电流)具有作用力,在磁场变化的同时也产生电场。磁场的显示:磁场的大小、方向和分布情况,可以利用磁力线来表示。2.1.3磁力线(a)马蹄形磁铁被校直成条形磁铁后N极和S极的位置(b)具有机加工槽的条形磁铁产生的漏磁场(c)纵向磁化裂纹产生的漏磁场条形磁铁的磁力线分布磁力线在每点的切线方向代表磁场的方向,磁力线的疏密程度反映磁场的大小。磁力线具有以下特性:磁力线在磁体外,是由N极出发穿过空气进入S极,在磁体内是由S极到N极的闭合线;磁力线互不相交;同性磁极相斥,因同性磁极间间磁力线有互相排挤的倾向;异性磁极相吸,因异性磁极间磁力线有缩短长度的倾向。2.1.4磁场强度、磁通量与磁感应强度磁场强度:磁场具有大小和方向,磁场大小和方向的总称叫磁场强度H,通常也把单位正磁极所受的力称为磁场强度。单位为A/m(SI)和Oe(CGS)。磁通量:简称磁通,它是磁场中垂直穿过某一截面的磁力线的条数,用符号Φ表示。单位为Wb(SI)和Mx(CGS)。磁感应强度:将原来不具有磁性的铁磁性材料放入外加磁场内,便得到磁化,它除了原来的外加磁场外,在磁化状态下铁磁性材料本身还产生一个感应磁场,这两个磁场叠加起来的总磁场,称为磁感应强度B。单位是T(SI)和Gs(CGS)。磁感应强度是矢量,有大小和方向,可用磁感应线来表示,磁感应强度的大小等于穿过与磁感应线垂直的单位面积上的磁通量,所以磁感应强度又称为磁通密度。磁感应强度不仅有外加磁场有关,还与被磁化的铁磁性材料的性质有关,B=μH。2.1.5磁导率磁感应强度B与磁场强度H的比值称为磁导率,或称为绝对磁导率,用符号μ表示,表示材料被磁化的难易程度,单位H/m.μ不是常数,随磁场大小不同而改变,有最大值。真空磁导率μo在真空中,磁导率是常数,μo=4π×10-7H/m•相对磁导率μr材料的磁导率与真空磁导率的比值μr=μ/μo无单位此外,磁粉探伤中还用到材料磁导率、最大磁导率、有效磁导率和起始磁导率。最大磁导率:在磁化曲线上,B/H值最大时对应拐点处的磁导率称为最大磁导率μm起始磁导率:在B和H接近零时测得的磁导率称为起始磁导率μa。2.2铁磁性材料2.2.1磁介质磁介质分类能影响磁场的物质称为磁介质。各种宏观物质都是磁介质。磁介质分为:顺磁质、逆磁质(抗磁质)和铁磁质。磁粉探伤只适用于铁磁性材料,通常把顺磁性材料和逆磁性材料都列入非磁性材料。2.2.2磁畴铁磁性材料内部自发磁化的大小和方向基本均匀一致的小区域称为磁畴,其体积约为10-5cm3,在这个小区域内,含有大约1012~1015个原子,各原子的磁化方向一致,对外呈现磁性。铁磁性材料的磁畴方向a)不显示磁性;b)磁化c)保留一定剩磁当把铁磁性材料放到外加磁场中去时,磁畴就会受到外加磁场的作用,一是使磁畴磁矩转动,二是使畴壁发生位移,最后全部磁畴的磁矩方向转向与外加磁场方向一致,铁磁性材料被磁化,显示出很强的磁性。高温情况下,磁体中分子热运动会破坏磁畴的有规则排列,使磁体的磁性削弱。超过居里点后,磁性全部消失,变为顺磁质。2.2.3磁化过程(1)未加外加磁场时,磁畴磁矩杂乱无章,对外不显示宏观磁性,如图(a)(2)在较小的磁场作用下,磁矩方向与外加磁场方向一致或接近的磁畴体积增大,而磁矩方向与外加磁场方向相反的磁畴体积减小,畴壁发生位移,如图(b)。(3)增大外加磁场时,磁矩转动畴壁继续位移,最后只剩下与外加磁场方向比较接近的磁畴,如图(c)。(4)继续增大外加磁场,磁矩方向转动,与外加磁场方向接近,如图(d)。(5)当外加磁场增大到一定值时,所有磁畴的磁矩都沿外加磁场方向有序排列,达到磁化饱和,相当于一个微小磁铁或磁偶极子,产生N极和S极,宏观上呈现磁性,如图(e)。2.2.4磁化曲线磁化曲线是表征铁磁性材料磁特性的曲线,用以表示外加磁场强度H与磁感应强度B的变化关系。B~H曲线的测绘方法:采用如图所示的装置曲线特征:2.2.5磁滞回线饱和磁场强度Bm矫顽力Hc典型磁性材料30CrMnSiA经880℃油淬,300℃回火状态下,测得的磁化曲线见下图,包括B~H曲线,μ~H曲线,和Br~H曲线。铁磁性材料的特性:高导磁性磁饱和性磁滞性根据矫顽力Hc大小分为软磁材料(Hc=400A/m)和硬磁材料(Hc=8000A/m)软磁材料与硬磁材料的特征(1)软磁材料──是指磁滞回线狭长,具有高磁导率、低剩磁、低矫顽力和低磁阻的铁磁性材料。软磁材料磁粉检测时容易磁化,也容易退磁。软磁材料如电工用纯铁、低碳钢和软磁铁氧体等材料。(2)硬磁材料──是指磁滞回线肥大,具有低磁导率、高剩磁、高矫顽力和高磁阻的铁磁性材料。硬磁材料磁粉检测时难以磁化,也难以退磁。硬磁材料如铝镍钴、稀土钴和硬磁铁氧体等材料。2.3电流的磁场2.3.1通电圆柱导体的磁场磁场方向:与电流方向有关,用右手定则确定。磁场大小:安培环路定律计算根据上式,通电直长导体表面的磁场强度为:IdlHRIH2H--磁强强度(A/m)I--电流强度(A)R--圆柱导体半径(m)导体外r处(rR)和导体内部r处(rR)磁场强度:rR时rR时直圆柱导体内、外及表面的磁场强度分布如右图所示:rIH222RIrH钢棒通电法磁化磁场强度分布特点,交流和直流分布特点,磁感应强度的分布特点钢管通电法磁化用交流和直流电磁化同一钢管时,钢管内部H=0,B=0,钢管内部没有磁场存在,磁场是从钢管内壁到表面逐渐上升到最大值。设管内外半径分别为R1和R2,通直流电磁化,由安培环路定律得()())(2)(2122212RRrRrIH21RrR0HRr钢管中心导体法磁化钢管中心导体法磁化时,在通电中心导体内、外磁场分布与图2-17相同,由于中心导体为铜棒,其,所以只存在H。在钢管上由于,所以能感应产生较大的磁感应强度。并且钢管内壁的磁场强度和磁感应强度都比外壁大。应采用直流电或整流电理论计算及应用1r1r2.3.2通电线圈的磁场磁场方向:右手定则磁场大小:空载通电线圈中心的磁场强度可用下式计算22cosDLNILNIHH--磁场强度(A/m)N--线圈匝数L--线圈长度(m)D--线圈直径(m)--线圈对角线与轴线的夹角线圈纵向磁化的磁化力用安匝(IN)来表示。线圈的分类a按结构分电缆缠绕线圈和螺管线圈b按填充系数低填充中填充高填充c按L/D短螺管线圈LD有限长螺管线圈LD线圈内磁场分布特点:在有限长螺管线圈内部的中心轴线上,磁场分布较均匀,线圈两端处的磁场强度为内部的1/2左右,见右图。在线圈横截面上,靠近线圈内壁的磁场强度较线圈中心强,见右图。无限长螺管线圈LD内部磁场分布均匀,并且磁场只存在于线圈内部,磁力线方向与线圈的中心轴线平行。理论计算P24例1例22.4退磁场2.4.1退磁场定义把铁磁性材料磁化时,由材料中磁极所产生的磁场称为退磁场,它对外加磁场有削弱作用,用符号ΔH表示。退磁场与材料的磁化强度成正比。ΔH――退磁场M――磁化强度N――退磁因子2.4.2有效磁场铁磁性材料磁化时,只要在工件上产生磁极,就会产生退磁场,它削弱了外加磁场,所以工件上的有效磁场用H表示,等于外加磁场减去退磁场。其数学表达式为:MNHH――有效磁场(A/m)Ho――外加磁场(A/m)ΔH――退磁场(A/m)得:2.4.3退磁因子NN主要与工件的形状有关(L/D),对于完整的闭合的环形试样N=0;对于球体,N=0.333;对于圆钢棒,L/D愈小,N愈大。影响试件退磁场大小的因素:退磁场大小与外加磁场大小有关,外加磁场增大,退磁场也增大;退磁场与L/D有关,L/D增大,退磁场减小;工件磁化时,如果不产生磁极,就不会产生退磁场。HHHo)1(1ooNHH)1(000000rNHHHHNHHBNHHHH如果工件的截面为非圆形,设截面面积为S,则有效直径为:则退磁场的计算P.32例1例2计算结果讨论:当L/D=2时,退磁场影响很大,工件磁化需要很大的外加磁场强度。只有当外加磁场强度Ho远远大于有效磁场强度H时,才足以克服退磁场的影响,对工件进行有效的磁化。但实际上通电线圈很难产生上千Oe的外加磁场强度,所以通常采用延长块将工件接长,以增大L/D值,减小退磁场的影响。SD2SLDL22.5磁路与磁感应线的折射磁力线通过的闭合路径叫磁路。2.5.1磁路定律:mrNIsLNI2.6漏磁场2.6.1漏磁场的形成所谓漏磁场,就是铁磁性材料磁化后,在不连续性处或磁路的截面变化处,磁感应线离开和进入表面时形成的磁场。如右图两磁极间漏磁场分布漏磁场形成的原因,是由于空气的磁导率远远低于铁磁性材料的磁导率。如果在磁化了的铁磁性工件上存在着不连续性或裂纹,则磁感应线优先通过磁导率高的工件,这就迫使不部分磁感应线从缺陷下面绕过,形成磁感应线的压缩。但是,工件上这部分可容纳的磁感应线数目也是有限的,又由于同性磁感应线相斥,所以,不部分磁感应线从不连续性中穿过,另一部分磁感应线遵从折射定律几乎从工件表面垂直地进入空气中去绕过缺陷又折回工件,形成

1 / 119
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功