中国地质大学2014届本科生毕业论文II概率论与数理统计在日常经济生活中的应用摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。关键词:概率论数理统计经济生活随机变量贝叶斯公式中国地质大学2014届本科生毕业论文IIIProbabilityTheoryandMathematicalStatisticsInourdailyeconomiclifeAbstract:Asaninstrumentaldiscipline,Mathematicsplaysaveryimportantroleinourdailylifeandscientificresearch.Probabilitytheoryandmathematicalstatisticsasanimportantpartofmathematicsinlifehasbecomeincreasinglywidespreadinrecentyears,probabilitytheoryandmathematicalstatisticsknowledgeisincreasinglypenetrateintoeconomics,psychology,geneticsandotherdisciplines,inadditiontooureverydaylives,arerelatedtotheprobabilityofgambling,lottery,weather,sportsandotherschoolhasaverycloserelationship.Thisarticlefocusesonthetheoryofprobabilityandmathematicalstatisticsapplicationinourlives,throughtheintroductionofthefirsthalfofsomebasicknowledgeofprobabilitytheoryandmathematicalstatistics,numericalcharacteristics,includingthefundamentalnatureofprobability,randomvariablesandtheirdistributions,Bayesianformula,thecentrallimittheorem,combinedwiththesecondhalfofthecasesdiscussedthetheoryofprobabilityandmathematicalstatisticsinguidingroleinourlives,wecansay,probabilitytheoryandmathematicalstatisticsisnowoneofthemostactive,themostwidelyuseddiscipline.Keywords:ProbabilityMathematicalStatisticsEconomicLifeRandomVariablesBayesianLaw中国地质大学2014届本科生毕业论文第1页共15页目录摘要………………………………………………………………………………IAbstract…………………………………………………………………………II第一章基本知识…………………………………………………………………21.1概率的基本性质………………………………………………………21.2随机变量的数字特征…………………………………………………21.3点估计…………………………………………………………………41.4贝叶斯公式……………………………………………………………51.5中心极限定理…………………………………………………………61.6随机变量及其分布……………………………………………………7第二章在日常生活中的应用……………………………………………………92.1在中奖问题中的应用…………………………………………………92.2在经济管理决策中的应用……………………………………………92.3在经济损失估计中的应用……………………………………………102.4在求解经济最大利润中的应用………………………………………112.5在保险问题中的应用…………………………………………………112.6在疾病诊断中应用……………………………………………………12第三章结束语…………………………………………………………………13致谢………………………………………………………………………………14参考文献…………………………………………………………………………15中国地质大学2014届本科生毕业论文第2页共15页第一章基本知识§1.1概率的重要性质1.1.1定义设E是随机试验,S是它的样本空间,对于E的每一事件A赋予一个实数,记为P(A),称为事件的概率。概率)(AP满足下列条件:(1)非负性:对于每一个事件A1)(0AP(2)规范性:对于必然事件S1)S(P(3)可列可加性:设nAAA,,,21是两两互不相容的事件,有nkknkkAPAP11)()((n可以取)1.1.2概率的一些重要性质(i)0)(P(ii)若nAAA,,,21是两两互不相容的事件,则有nkknkkAPAP11)()((n可以取)(iii)设A,B是两个事件若BA,则)()()(APBPABP,)A()B(PP(iv)对于任意事件A,1)(AP(v))(1)(APAP(逆事件的概率)(vi)对于任意事件A,B有)()()()(ABPBPAPBAP§1.2随机变量的数字特征1.2.1数学期望设离散型随机变量X的分布律为kkpxXP}{,k=1,2,…若级数1kkkpx绝对收敛,则称级数1kkkpx的和为随机变量X的数学期望,记为)(XE,即ikkpxXE)(中国地质大学2014届本科生毕业论文第3页共15页设连续型随机变量X的概率密度为)(xf,若积分dxxxf)(绝对收敛,则称积分dxxxf)(的值为随机变量X的数学期望,记为)(XE,即dxxxfXE)()(定理设Y是随机变量X的函数Y=)(Xg(g是连续函数)(1)如果X是离散型随机变量,它的分布律为kpXP}x{k,k=1,2,…若kkkpxg1()绝对收敛则有)Y(E))((XgEkkkpxg1()(2)如果X是连续型随机变量,它的分概率密度为)(xf,若dxxfxg)()(绝对收敛则有)Y(E))((XgEdxxfxg)()(数学期望的几个重要性质(1)设C是常数,则有CCE)(;(2)设X是随机变量,C是常数,则有)()(XCECXE;(3)设X,Y是两个随机变量,则有)()()(YEXEYXE;(4)设X,Y是相互独立的随机变量,则有)()()(YEXEXYE.1.2.2方差定义设X是一个随机变量,若})({2XEXE存在,则称})({2XEXE为X的方差,记为D(x)即D(x)=})({2XEXE,在应用上还引入量)(xD,记为)(x,称为标准差或均方差。222)()())(()(EXXEXEXEXD方差的几个重要性质(1)设C是常数,则有,0)(CD(2)设X是随机变量,C是常数,则有)(C)(2XDCXD,D(X))(CXD;(3)设X,Y是两个随机变量,则有E(Y))}-E(X))(Y-2E{(XD(Y)D(X))(YXD特别,若X,Y相互独立,则有)()()(YDXDYXD;(4)0)(XD的充要条件是X以概率1取常数E(X),即1)}({XEXP.中国地质大学2014届本科生毕业论文第4页共15页切比雪夫不等式:设随机变量X具有数学期望2)(XE,则对于任意正数,不等式22}-XP{成立§1.3点估计1.3.1矩估计用矩法求估计很古老的估计方法,是建立在独立同分布情形下的大数定律(样本均值趋向总体平均),它由K.Pearson在20世纪初提出,其中心思想就是用样本矩去估计总体矩。总体X分布函数的未知参数为12(,,,),Tm如果总体的k阶原点矩12()(,,,),1,2,,kkmEXkm存在,我们设总体的k阶原点矩与它的样本的k阶原点矩相等11,1,2,,nkkiiAXkmn即1211(,,,)(),1,2,,nkkkmikiEXXAkmn从上面式子可得到关于未知量的解12ˆˆ(,,,),1,2,,inXXXim,取12ˆˆˆˆ(,,,)Tm作为12(,,,)Tm的估计,就称ˆ为的矩估计。关键要掌握两个式子(设总体的均值为,方差为2,12,,,nXXX是来自总体X的一个样本):可得总体X的一阶,二阶原点矩为122222=E(X)=,()()[()],EXDXEX而样本的一阶,二阶原点矩为2121111,nniiiiAXXAXnn由此可得到22211,niiXXn,所以ˆX,其中由于上面无偏性有提到方差并不等于样本方差2S,而是221ˆnSn,矩估计中国地质大学2014届本科生毕业论文第5页共15页为211()1niiXXn。当矩估计不唯一时,我们可以根据下面的两个基本原则来选择是否用矩估计:a、涉及到矩的阶数尽量小,对总体X的要求也尽量少;比较常用到的矩估计的阶数一般是一、二阶数;b、用的估计最好是最小充分统计量的函数,因为在各种统计问题中充分性原则都应是适合的。矩估计的两个基本特点是1、由于矩估计是基于经验分布函数,而经验分布函数逼近真实分布函数的前提条件是样本容量较大,所以理论上,矩估计是以大样本为应用对象的;2、矩估计没有用到总体分布的任何信息时,本质上是一种非参数方法,对已知的总体分布,它不一定是一个好的估计。1.3.2极大似然估计极大似然方法是统计中最重要、应用最广泛的方法之一。该方法在1821年由德国数学家Gauss提出的,但并没有得到重视,在1922年R.A.Fisher再次提出,并探讨研究了它的性质。它利用总体分布函数的相关信息,克服矩估计的一些不足。总体X的分布律或概率密度函数为(;),fx是未知参数,其中总体的样本是12,,,nXXX,则121(;)(;,,,)(;)nniiLxLxxxfx为的似然函数。若统计量12ˆˆˆ()(,,,)nXXXX满足条件ˆ(();)sup(;),LXXLxˆˆ()()()()minYXYXYXYX则称ˆ()X为的极大似然估计。极大似然法有许多优良的性质:相合性与渐进有效性、渐进正态性等等。可以计算一些比较复杂的点估计。尽管如此,极大似然也有它的局限性,比如说:极大似然法一定要知道总体分布形式,并且一般情况下,似然方程组的求解比较复杂,一般需要在计算机上通过跌代运算方能计算出其近似解,且并不是通过求导数都获得极大似然估计值的,以及任何统计推断都应该依赖损失