小学五年级数学上、下复习知识点归纳总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

三、观察物体1、从不同的角度观察物体,看到的形状可能相同,也可能不同;长方体或正方体:从同一位置最多能看到三个面,最少看到一个面。圆柱体:从上面看到的形状是圆形,从其他方向看到的是长形或正方形。球体:无论从哪个角度看,看到的形状都是圆形。2、正面与后面、左面与右面、上面与下面,都是相对的。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。6、至少用8个正方体可拼成较大的正方体,27个64个125个。。。都可拼成较大正方体。五年级数学下册知识点归纳一、观察物体二、图形的运动1、图形变换的基本方式:对称、平移和旋转。对称点是关于一条直线对称的点,一般用于轴对称。对应点是一个图形经变换后的图形与变换前的图形位置相同的点,一般用于平移和旋转。(一)图形的平移1、平移不改变图形的大小和形状。2、平移是整个图形的移动,记得先找出每个关键点平移后的对应点。3、把图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。(2)找出原图形的各关键点。(3)根据题目要求找出平移后的对应点。(4)顺次连接对应点,标明各点名称。(二)轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。(1)学过的轴对称平面图形有:圆形、长方形、正方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,圆有无数条对称轴。注意:任意梯形和平行四边形不是轴对称图形。(2)轴对称图形的特征和性质:②对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同,方向相反。(3)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。(三)旋转:物体或图形围绕一个定点沿着一个方向转动一定的角度的现象叫做旋转。如风扇的叶片旋转。定点O叫做旋转中心,旋转的角度叫做旋转角,也是先确定对应点。(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转三要素:①旋转中心,固定不变;②旋转方向有顺时针、逆时针;③旋转角度有:常见的有30°、45°、60°90°、180°、270°。(3)长方形绕中心点旋转180度与原来重合,正方形绕中心点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。(4)旋转的性质:①图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;②其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变,位置和方向发生改变,旋转中心是唯一不动的点,③两组对应点分别与旋转中心的连线所成的角度相等,都等于旋转角;(5)怎样画图形旋转的形状:(1)先观察原图形的形状特征找准关键点,(2)找准旋转中心、旋转方向、旋转角度;(3)使用直角三角板的顶点与旋转中心重合,则该图形旋转后的形状就在三角板另一条边上;(4)确定各对应点的长度,用虚线标出来;(5)将每个对应点连接并标出名称。三、长方体和正方体的表面积和体积1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。(长宽高是相对而言的,随观察角度而定)长方体特点:(1)长方体有6个面,8个顶点,12条棱,相对的面完全相同,相对的面面积相等,相对的棱长度相等。(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体特点:(1)正方体有12条棱,它们的长度都相等。(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。(3)正方体可以看做长、宽、高都相等的长方体,它是一种特殊的长方体。长方体与正方体的异同:相同点不同点面棱长方体都有6个面,12条棱,8个顶点。6个面都是长方形。(有可能有两个相对的面是正方形)。相对的棱的长度都相等正方体6个面都是正方形。12条棱都相等。【知识点4】经过折叠可以组合成长方体:经过折叠可以组合成正方体:3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面的总面积叫做它的表面积。长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab或S=2ah+2bh+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)【贴墙纸】正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2【生活实际】油箱、罐头盒等都是6个面,游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。【注意】用刀分开物体时,每分一次增加两个面。(表面积相应增加)【注意】长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。5、物体所占空间的大小叫做物体的体积。长方体的体积=长×宽×高V=abh长=体积÷宽÷高a=V÷b÷h宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h=V÷a÷b正方体的体积=棱长×棱长×棱长V=a×a×a=a3读作“a的立方”表示3个a相乘,(即a•a•a)长方体或正方体底面的面积叫做底面积(占地面积)。长方体(或正方体)的体积=底面积×高用字母表示:V=Sh(换个角度看,横截面积相当于底面积,长相当于高)。【注意】一个长方体和一个正方体的棱长总和相等,但体积不一定相等。6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。计量容积一般就用体积单位。计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和mL。1升=1立方分米1毫升=1立方厘米1升=1000毫升(1L=1dm31mL=1cm31L=1000mL)长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)【注意】长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在-h原来)V物体=S×h升高【注意】1㎝、1cm2、1cm3它们是三个不同的计量单位,所以不能进行比较。8、【体积单位换算】大单位小单位小单位大单位进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米【注意】长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。质量单位进率,时间单位进率,长度单位进率【单位换算】大单位小单位小单位大单位长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)面积单位:1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)质量单位:1吨=1000千克1千克=1000克人民币:1元=10角1角=10分1元=100分时分秒:1天=24时1时=60分1分=60秒第二部分数与代数一、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数和负数。2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。例:12是6的倍数,6是12的因数。(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的因数的求法:成对地按顺序找。(3)一个数的倍数的个数是无限的,最小的倍数是它本身。一个数的倍数的求法:依次乘以自然数。一个数的最小倍数和最大因数是它本身。(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。3)个位上是0或5的数,是5的倍数。4)能同时被2、3、5整除(也就是2、3、5的倍数)的最小两位数是30,最大的两位数是90,最小的三位数是120。同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28。4:自然数按能不能被2整除来分:分为奇数、偶数。奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。最小的奇数是1,最小的偶数是0.关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。1:只有1个因数。“1”既不是质数,也不是合数。0:最小的质数是2,最小的合数是4,连续的两个质数是2、3。每个合数都可以由几个质数相乘得到,质数相乘一定得合数。20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。关系:奇数×奇数=奇数质数×质数=合数6、最大、最小A的最小因数是1;A的最大因数是A;A的最小倍数是A;最小的奇数是1;最小的偶数是0;最小的质数是2;最小的自然数是0;最小的合数是4;7、分解质因数:把一个合数分解成多个质数相乘的形式。用短除法分解质因数(一个合数写成几个质数相乘的形式)。比如:30分解质因数是:(30=2×3×5)8、互质数:公因数只有1的两个数,叫做互质数。两个质数的互质数:5和7;两个合数的互质数:8和9;一质一合的互质数:7和8;两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;9、公因数、最大公因数几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功