1砷化镓太阳能电池摘要本文主要对砷化镓太阳电池的结构、性能、研制及生产情况作了简单介绍,分析了GaAs太阳电池的发展方向,最后根据GaAs太阳电池的研制进展和空间试用情况,提出了发展GaAs太阳电池的设想。关键词:砷化镓太阳能电池;技术;进展引言:近年来,太阳能光伏发电在全球取得长足发展。常用光伏电池一般为多晶硅和单晶硅电池,然而由于原材料多晶硅的供应能力有限,加上国际炒家的炒作,导致国际市场上多晶硅价格一路攀升,最近一年来,由于受经济危机影响,价格有所下跌,但这种震荡的现状给光伏产业的健康发展带来困难。目前,技术上解决这一困难的途径有两条:一是采用薄膜太阳电池,二是采用聚光太阳电池,减小对原料在量上的依赖程度。常用薄膜电池转化率较低,因此新型的高倍聚光电池系统受到研究者的重视。聚光太阳电池是用凸透镜或抛物面镜把太阳光聚焦到几倍、几十倍,或几百倍甚至上千倍,然后投射到太阳电池上。这时太阳电池可能产生出相应倍数的电功率。它们具有转化率高,电池占地面积小和耗材少的优点。高倍聚光电池具有代表性的是砷化镓(GaAs)太阳电池。1.砷化镓简介砷化镓是一种重要的半导体材料,属Ⅲ-Ⅴ族化合物半导体,化学式GaAs,分子量144.63,属闪锌矿型晶格结构,晶格常数5.65×10-10m,熔点1237℃,禁带宽度1.4电子伏。砷化镓于1964年进入实用阶段,砷化镓可以制成电阻率比硅、锗高3个数量级以上的半绝缘高阻材料,用来制作集成电路衬底、红外探测器、γ光子探测器等。由于其电子迁移率比硅大5~6倍,故在制作微波器件和高速数字电路方面得到重要应用。用砷化镓制成的半导体器件具有高频、高温、低温性能好、噪声小、抗辐射能力强等优点。此外,还可以用于制作转移器件──体效应器件。砷化镓是半导体材料中,兼具多方面优点的材料,但用它制作的晶体2三极管的放大倍数小,导热性差,不适宜制作大功率器件。虽然砷化镓具有优越的性能,但由于它在高温下分解,故要生长理想化学配比的高纯的单晶材料,技术上要求比较高.2.发展历程GaAs太阳电池的发展是从上世纪50年代开始的,至今已有已有50多年的历史。1954年世界上首次发现GaAs材料具有光伏效应。在1956年,LoferskiJ.J.和他的团队探讨了制造太阳电池的最佳材料的物性,他们指出Eg在1.2~1.6eV范围内的材料具有最高的转换效率。(GaAs材料的Eg=1.43eV,在上述高效率范围内,理论上估算,GaAs单结太阳电池的效率可达27%)。20世纪60年代,Gobat等研制了第1个掺锌GaAs太阳电池,不过转化率不高,仅为9%~10%,远低于27%的理论值。20世纪70年代,IBM公司和前苏联Ioffe技术物理所等为代表的研究单位,采用LPE(液相外延)技术引入GaAlAs异质窗口层,降低了GaAs表面的复合速率,使GaAs太阳电池的效率达16%。不久,美国的HRL(HughesResearchLab)及Spectrolab通过改进了LPE技术使得电池的平均效率达到18%,并实现了批量生产,开创了高效率砷化镓太阳电池的新时代[1]。从上世纪80年代后,GaAs太阳电池技术经历了从LPE到MOCVD,从同质外延到异质外延,从单结到多结叠层结构的几个发展阶段,其发展速度日益加快,效率也不断提高,目前实验室最高效率已达到50%(来自IBM公司数据),产业生产转化率可达30%以上。3.制备方法与硅相仿,砷化镓材料也可分为体单晶和外延材料两类。体单晶可以用作外延的衬底材料,也可以采用离子注入掺杂工艺直接制造集成电路(采用高质量、大截面、半绝缘砷化镓单晶)。重点是液封直拉法(即液封乔赫拉斯基法,简称LEC法),但水平舟生长法(即水平布里其曼法)因制出的单晶质量和均匀性较好,仍然受到一定的重视。液封直拉法的一个新发展是在高压单晶炉内用热解氮化硼(PBN)坩埚和干燥的氧化硼液封剂直接合成和拉制不掺杂、半绝缘砷化镓单晶。另外,常压下用石英坩埚和含水氧化硼为液封剂的方法也已试验成功。不论水平舟生长法或是液封直拉法,晶体的直径均可达到100~150毫米而与硅单晶相仿。3砷化镓的外延生长按工艺可分为气相和液相外延,所得外延层在纯度和晶体完整性方面均优于体单晶材料。通用的汽相外延工艺为Ga/AsCl3/H2法,这种方法的变通工艺有Ga/HCl/AsH3/H2和Ga/AsCl3/N2法。为了改进Ga/AsCl3/H2体系气相外延层的质量,还研究出低温和低温低压下的外延生长工艺。液相外延工艺是用Ga/GaAs熔池覆盖衬底表面,然后通过降温以生长外延层,也可采用温度梯度生长法或施加直流电的电外延法。在器件(特别是微波器件)的制造方面,汽相外延的应用比液相外延广泛。液相外延可用来制造异质结(如GaAs/AlxGa1-xAs),因此它是制造砷化镓双异质结激光器和太阳电池等的重要手段。砷化镓外延技术还有分子束外延和金属有机化合物汽相沉积外延。分子束外延是在超高真空条件下,使一个或多个热分子束与晶体表面相作用而生长出外延层的方法。对入射分子或原子束流施加严格的控制,可以生长出超晶格结构,例如由交替的GaAs和AlxGaAs薄层(厚度仅10埃)所组成的结构。金属有机化合物汽相沉积外延是用三甲基镓或三乙基镓与砷烷相作用而生长外延层。用这种方法也能适当地控制外延层的浓度、厚度和结构。与分子束外延相比,金属有机化合物汽相沉积外延设备和工艺均较简单,但分子束外延层的质量较高[2]。4.砷化镓中的杂质在晶体生长过程中,会有意或无意地引入杂质。一般情况下,引入的杂质都是具有电活性的,但是有一些引进的污染会在晶体中形成空位,从而不具有电活性。规定掺入的杂质在半导体中要么是施主原子,要么是受主原子。施主原子是比其替代的原子多一个或一个以上的电子,这些多出的电子在晶体中可以自由移动从而形成电流;相反,受主原子是比其替代的原子少一个或一个以上的电子,因此,受主原子可以捕获晶体中的自由移动的电子。不管是在半导体中掺人哪一种类型的杂质,都会导致半导体材料电学性能的改变。两种类型的杂质,即不管是浅能级杂质还是深能级杂质,通过与砷原子或镓原子的复杂结合而存在于砷化镓晶体中。硅就是目前得到最广泛研究的一种掺杂剂,这种四族元素,在低温下与砷化镓作用,可形成P型材料,在高温下与砷化镓作用,可形成n型材料。铬在砷化镓中是深受主原子,它的杂质能级接近禁带中心位置,利用这一特点,可以在浅n型砷化镓材料中通过掺铬进行补偿而得到4半绝缘材料。其它的元素,如铜、氧、硒、碲、锡等在砷化镓中的行为也得到了广泛的研究,这样,我们可根据器件设计的需求进行掺杂得到n型或P型砷化镓。5.几项基本技术介绍GaAs生产方式有别于传统的硅晶圆生产方式,GaAs生产需要采用磊晶技术,这种磊晶圆的直径通常为4―6英寸,比硅晶圆的12英寸要小得多,因此,制备其磊晶圆需要特殊的机台。目前,常用于GaAs制备的技术有几种,主要有LPE和MOVPE等。1.LPE技术介绍液相外延技术(LiquidPhaseEpitaxy,简称LPE)1963年由Nelson等人提出的,在GaAs的生产中,其以低熔点的Ga)镓)为溶剂,以待生长材料Ga、As(砷)和掺杂剂Zn(锌)、Te(碲)、Sn(锡)等为溶质,使溶质在溶剂中呈饱和或过饱和状态。通过降冷却使石墨舟中的溶质从溶剂中析出,在单晶衬底上定向生长一层晶体结构和晶格常数与单晶衬底(常为Ga)足够相似的GaAs晶体材料,使晶体结构得以延续,实现晶体的外延生长。2.MOVPE技术介绍金属有机化学汽相淀积(MOCVD)是由美国洛克威尔公司的H.M.Manasevit等在1968年首先提出的一种制备化合物半导体薄层单晶膜的新型汽相外延生长技术。在GaAs晶片的制备中,它采用Ga元素的有机化合物和As的氢化物等作为晶体生长原料,以热分解反应方式在衬底上进行汽相外延,生长GaAs化合物半导体以及它们的多元固溶体的薄膜层单晶材料。MOCVD是在常压或低压(≈10kPa)下于通H2的冷壁石英反应器中进行的,衬底度为600-800℃,过程中需用射频加热石墨支架,让H2气通过度可控的液体源鼓泡携带金属有机物到生长区。目前MOVPE方法制备GaAs薄膜电池受生长速率、生长度和As/Ga比、金属有机物和AsH3的纯度等诸多参数的影响[3]。6.国内技术发展情况在上世纪70年代中期至90年代中期,国内一般采用LPE技术研制GaAs电池,单结GaAs/GaAs电池效可达20%。1995年开始,国内开始采用MOCVD技术研制GaAs电池。“十五”初期,单结GaAs/Ge电池进入量产(用于航天),量5产平均效率达到18.5%~19.0%(AM0)。我国首次GaAs电池试验是在1988年9月时进行的,当时发射的FY21A星上,在卫星的太阳方阵帆板上使用了20mm×20mm×0.3mm单结GaAs电池,取得较好的效果。2001年1月发射的“神舟3号”飞船和2002年5月发射的“海洋21”卫星上,也应用了单结GaAs/GaAs电池。[4]7.砷化镓电池产业发展现状就世界的角度来说,砷化镓电池主要还是应用在宇宙空间探测利用等方面,在地面使用较少。目前全世界专业制作砷化镓聚光电池的工厂有美国的Emcore,SpectroLab(波音的子公司)和德国的AzurSpace等,中国的产业化推广还未成形。2007年8月开始,由于聚光技术的采用,砷化镓电池从卫星上的使用转变为聚光的太阳能发电站的规模应用。为此,Emcore公司花了1000万美元,将产能增加到目前的每年150兆瓦。在2008年,全球的砷化镓电池的生产取得突破性的发展,4月,作为砷化镓生产的全球主要厂家之一SpectroLab,获得350兆瓦,9300万美元(1000倍聚光)的电站订单。在东亚地区,也有初步的生产推广,2008年5月,韩国电站就接到70兆瓦,2800万美元(500倍聚光)的订单。随着全球光伏产业的大发展,光伏电池的生产在逐步推开。8.砷化镓电池产业发展遇到的问题砷化镓光伏电池有着较优的转化效率,有明显的发展优势,应该成为一种有效的光伏发电途径,但是,目前在中国产业化方面并不理想,出现了一些问题和阻碍。主要有以下几个方面:一是制备费用高居不下,据文献报道,砷化镓晶片的制备费用约为10000$/m2,比常规的硅晶电池相比高出不少,当然,这是几方面的因素造成的:一方面,由于镓元素在全球的储量不多,大概在两百万吨左右(中国约占一半),而且开采难度大(一般为铝土矿的伴生矿),在当今号召降低高耗能投资的要求下(电解铝项目得到严格控制),短期内要扩大粗镓的生产比较难。另一方面,由于半导体材料对纯度的要求很高,对半导体用镓的要求达到6―7个9,目前世界上掌握这样提纯技术的国家仅有美国、德国和日本少数几个,由于技术的垄断,对扩大再生产构成限制,总体上增加了制备费用。6二是砷化镓的另一个组分砷有毒,对于环境安全和生产工人自身身体安全都是一个不小的威胁,在没有得到有力技术保证的前提下,一般的企业也不愿往这方面投产。第三,目前的砷化镓电池由于自身物理因素的限制(脆性),一般制成带衬底的薄膜电池,需要构造隧道结和防止形成寄生的p/n结,这增加了技术的难度。第四,由于砷化镓电池的高转化率,常把其制成高聚光电池,当然,这一方面可以缩小耗材,对于降低成本有利,但是也存在需要追日跟踪系统的问题,而且由于各地区的日照条件不一样据了解,目前对追日跟踪系统的要求也不一样,也增加系统的复杂度和实施的难度。第五,国内市场这几年的注意力都集中在多晶硅市场,而且是进行的是一种90%以上原料依赖进口,90%以上产品依赖出口的一种模式,没有把注意力集中到本土化光伏发电推广,长此以往,整个光伏产业会缺乏动力需求,这对砷化镓电池产业的发展来说也是不利的。第六,对于产业化来说,民众认可是很重要的,这些年来,对于砷化镓光伏电池,民众认知度不够,媒介和研究机构的宣传推广工作有些不力。第七是国家策,府策支持在光伏产业方面比较宏观,目前还没有做到对光伏电池行业进行分类别对待,支持产业发展,在成本竞争不具备优势的情