1苏教版小学数学总复习基础知识(一)数的认识整数【正数、0、负数】1、一个物体也没有,用0表示。0和1、2、3……都是自然数,也都是整数2、最小的自然数是0,自然数的个数是无限的,没有最大的自然数。3、0既不是正数,也不是负数。正数都大于0,负数都小于0。4、整数包括正整数、0和负整数。如:-3、-17、0、90、6等。5、整数的读写:多位数从个位起,每四位分为一级,可分为个级、万级、亿级。读数时,从最高位读起,一级一级地读。读万级和亿级的数时要按个级的读法来读,,并在后面加上级名。每一级末尾的0都不读,其他数位上无论有一个0或连续有几个0,都只读一个“零”。6、整数的写法:写数时,先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一位上一个也没有就在那一位上写0。7、整数的数位从低位开始分别是个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、百亿位、千亿位……整数的计数单位分别是一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿……8、大数目的改写:把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。在不改变原数大小的前提下,按要求改写数,写出的数是原数的准确数,根据需2要还可以还原。例如:974800000=9.748亿,453200=45.32万。9、求一个数的近似值(通常采用四舍五入法):把一个数保留整数、保留一位小数、保留两位小数、保留三位小数……也可以分别说成精确到个位、精确到十分位、精确到百分位、精确到千分位……例如把8745603先改写成用“万”作单位的数,再省略“万”后面的尾数(精确到万位)8745603=874.5603万≈875万10、整数的大小比较:如果位数不同,位数多的数就大;如果位数相同,先看最高位,最高位上的数大的那个数就大,最高位相同,次高位上的数大的哪个数就大,如果还相同,则继续比较,以此类推,直到比较出大小为止。小数【有限小数、无限小数】1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。3、小数点向右移动一位、两位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、两位、三位……原来的数分别缩小10倍、100倍、1000倍……4、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。5、小数的读法:读小数时,整数部分仍按照整数的读法来读,整数部分是“0”的读作“零”,小数点读作“点”,小数部分按从左往右的顺序读出每个数位上的数字,小数部分的0要读。36、小数的写法:写小数时,整数部分按照整数的写法去写,整数部分是0的写作“0”,小数点写在整数部分的右下角,小数部分顺次写出每一个数位上的数字。7、小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。8、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。9、比较小数大小的方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。10、求小数近似数的一般方法:(1)先要弄清保留几位小数;(2)根据需要确定看哪一位上的数;(3)用“四舍五入”的方法求得结果。分数【真分数、假分数】1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。4、分数可以分为真分数和假分数。5、分子小于分母的分数叫做真分数。真分数小于1。6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。分子是分母倍数的假分数实际上是整数。7、分子和分母只有公因数1的分数叫做最简分数。8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除4外),分数的大小不变。9、应用分数的基本性质,可以通分和约分。约分:用分子和分母同时除以它们的最大公因数,化成最简分数的过程。通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程,叫做通分。10、倒数:乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。百分数【税率、利息、折扣、成数】1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或2、分数与百分数比较:不同点相同点分数可以表示具体数量,可以有单位名称都可以表示两个数之间的关系百分数不可以表示具体数量,不可以有单位名称3、折扣:在进行商品销售是,经常用到“打折扣”出售,简单说就是打折,几折就是十分之几,或用百分数百分之几十来表示。如:八折就是按原价的80%出售,六五折就是按原价的65%出售。原价×折扣=现价现价÷原价=折扣现价÷折扣=原价4、分数、小数、百分数的互化。(1)把分数化成小数,用分数的分子除以分母。(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约成最简分数。5(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数,也就是百分号前保留一位小数),再把小数化成百分数。(6)把百分数化成分数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。5、求一个数比另一个数多(少)百分之几,就是求一个数比另一个数多(少)的占另一个数的百分之几。拿多或者少的部分÷单位“1”6、利息=本金×利率×时间因数与倍数【素数(质数)、合数、奇数、偶数】1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。3、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。4、5的倍数的特点:个位上的数是5或0。2的倍数的特点:个位上的数是2、4、6、8或0。2的倍数都是偶数。3的倍数的特点:各位上数的和一定是3的倍数。5、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。7、一个数,如果除了1和它本身之外还有别的因数,这样的数就叫做合数。8、在1—20这些数中:素数:2、3、5、7、11、13、17、19。合数:4、6、8、9、10、12、14、15、16、18、20。61既不是质数,也不是合数9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。10、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。11、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。12、公因数只有1的两个数有以下几种情况:(1)相邻的两个自然数(2)质数与质数(3)质数与合数(但合数不是质数的倍数)(二)数的运算计算法则【整数、小数、分数】1、计算整数加、减法要把相同数位对齐,从低位算起。2、计算小数加、减法要把小数点对齐,从低位算起。3、小数乘法:(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。(2)注意:在积里点小数点时,位数不够的,要在前面用0补足。4、小数除法:(1)商的小数点要和被除数的小数点对齐;(2)有余数时,要在后面添0,继续往下除;(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。75、分数加、减法:(1)同分母分数相加减,把分子相加减,分母不变。(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。6、分数大小的比较:(1)同分母分数相比较,分子大的大,分子小的小。(2)异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。7、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。8、甲数除以乙数(0除外),等于甲数乘乙数的倒数。四则运算关系加法一个加数=和-另一个加数减法被减数=差+减数减数=被减数-差乘法一个因数=积÷另一个因数除法被除数=商×除数除数=被除数÷商1、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。2、简便计算运算定律:运算定律用字母表示加法交换律a+b=b+a加法结合律(a+b)+c=a+(b+c)乘法交换律a×b=b×a乘法结合律(a×b)×c=a×(b×c)乘法分配律(a+b)×c=a×c+b×c8减法运算规律a-b-c=a-(b+c)除法运算规律a÷b÷c=a÷(b×c)2、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)(1)A÷0.1=A×10(7)A÷0.01=A×100(2)A×0.1=A÷10;(8)A×0.01=A÷100(3)A÷0.2=A×5(9)A÷0.25=A×4(4)A×0.2=A÷5(10)A×0.25=A÷4(5)A÷0.5=A×2(11)A÷0.125=A×8(6)A×0.5=A÷2(12)A×0.125=A÷83、求近似数的方法。(1)四舍五入法。(2)进一法。(3)去尾法。4、积与因数、商与被除数的大小比较:第2个因数1,积第1个因数;第2个因数=1,积=第1个因数;第2个因数1,积第1个因数。除数1,商被除数;除数=1,商=被除数;除数1,商被除数;(三)式与方程用字母表示数1、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“•”,也可以省略不写。在省略数字与字母之间的乘号时,要把数字写在字母的前面。2、2a与a2意义不同:92a表示两个a相加,a2表示两个a相乘。即:2a=a+a,a2=a×a。3、用字母表示数:(1)用字母表示任意数:如X=4a=6(2)用字母表示常见的数量关系:如s=vt(3)用字母表示运算定律:如a+b=b+a(4)用字母表示计算公式:S=ah方程与等式1、含有未知数的等式叫做方程。2、使方程左右两边相等的未知数的值,叫做方程的解。3、求方程的解的过程,叫做解方程。4、方程和等式的联系与区别:方程等式联系方程一定是等式,等式不一定是方程区别含有未知数不一定含有未知数5、等式的基本性质(一)等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式。6、等式的基本性质(二)等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。7、列方程解应用题的一般步骤:(1)弄清题意,找出未知数并用X表示。(2)找出应用题中数量间的相等关系,并列出方程。(3)求出方程的解。(4)检验或验算,写出答案。10(四)正比例与反比例比和比例1、比和比例的联系与区别:比与比例的区别1、意义不同比的意义两个数相除又叫做两个数的比。比例的意义表示两个比相等的式子叫做比例。2、名称不同比的名称两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比例的名称组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。3、性质不同比的性质比的前项和后项同时乘或者除以相同的数(0除外),比值不变。比例的性质在比例里,两个外项的积等于两个内项的积。4、应用不同应用比的意义求比值。应用比的性质化简比。应用比例的意义判断两个不能否组成比例。应用比例的性质不但可以判断两个比能否组成比例,还可以解比例。2、比同分数、除法的联系与区别:比分数除法联系前项分子被除数比号分数线除号后项分母除数比值分数值商11比的基本性质分数的基本性质除法的商不变性质区别比表示两个数之间的关系。分数表示一个数。除法表示一种运算。3、求比值与化简比的区别:一般方法结果求比值根据比值的意义,用前项除以后项。是一个数。可以是整数、小数或分数。化