第二章一元二次方程用配方法求解一元二次方程(二)上节课我们学习了配方法解一元二次方程的基本步骤:例如,x2-6x-40=0移项,得x2-6x=40方程两边都加上32(一次项系数一半的平方),得x2-6x+32=40+32即(x-3)2=49开平方,得x-3=±7即x-3=7或x-3=-7所以x1=10,x2=-4复习巩固将下列各式填上适当的项,配成完全平方式(口头回答).1.x2+2x+________=(x+______)25.x2-x+________=(x-______)24.x2+10x+________=(x+______)22.x2-4x+________=(x-______)23.x2+________+36=(x+______)2习题回望抢答!请同学们比较下列两个一元二次方程的联系与区别1.x2+6x+8=02.3x2+18x+24=0探究思路这两个方程有什么联系?如果方程的系数不是1,我们可以在方程的两边同时除以二次项系数,这样就可以利用上节课学过的知识解方程了!总结规律2x2+8x+6=0------x2+4x+3=03x2+6x-9=0------x2+2x-3=0-5x2+20x+25=0---x2-4x-5=0例2解方程3x2+8x-3=0解:方程两边都除以3,得01382xx移项,得配方,得2223413438xx1382xx925342x所以3,31,353421xxx例题精讲解下列方程1)3x2-9x+2=02)2x2+6=7x•4x2-8x-3=0习题训练一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:h=15t-5t2,小球何时能达到10m的高度?解:根据题意得15t-5t2=10方程两边都除以-5,得t2-3t=-2配方,得222232233tt41232t2123t1,221tt实际应用印度古算术中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮。告我总数有多少,两队猴子在一起?大意是说:一群猴子分两队,一队猴子数是猴子总数的八分之一的平方,另一队猴子数是12,那么猴子的总数是多少?请同学们解决这个问题。解决问题教材第17页第3题(3)(4)小题布置作业