信号与系统第三章(陈后金)2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

信号与系统SignalsandSystems普通高等教育“十一五”国家级规划教材《信号与系统》陈后金,胡健,薛健高等教育出版社,2007年系统的时域分析线性非时变系统的描述及特点连续时间LTI系统的响应离散时间LTI系统的响应冲激响应表示的系统特性四、卷积积分奇异信号的卷积积分延迟特性微分特性积分特性等效特性卷积积分的计算卷积积分的性质交换律分配律结合律平移特性展缩特性1.卷积积分的计算卷积的定义:d)()()()()(thxthtxty)())(()()(ththhht平移翻转(1)将x(t)和h(t)中的自变量由t改为;卷积的计算步骤:(2)把其中一个信号翻转得h(),再平移t;(3)将x()与h(t)相乘;对乘积后信号的积分。(4)不断改变平移量t,计算x()h(t)的积分。)()(),(e)(),(*)(tuthtutxthtxt计算)(x)(h解:将信号的自变量由t改为tOx(t)tOh(t)11[例]Oteu()u(t)1Ou()h()1将h()翻转得h()将h()平移t。当t0时,x()h(t)=0故x(t)*h(t)=0当t0时,)()(),(e)(),(*)(tuthtutxthtxt计算解:)]()([e)()(tuuthx[例]Oeu()x()Ou()h()11Oteu()u(t)1ttthtxe1de)(*)(0)()e1()(*)(tuthtxt由此可得tO1y(t)[例]计算y(t)=p1(t)*p1(t)。)()(11tpp0.5t+5.0t+5.01?t1t+5.0t+5.0)()(11tpp01t1a)t1b)1t0tttyt++1d)(5.05.0)(1tp0.5-0.51t)(1py(t)=0解:)(1tp0.5-0.51t)(1pt+5.0t+5.0)()(11tpp10t1t+5.0t+5.0)()(11tpp1t1c)0t1d)t1tttyt+1d)(5.05.0y(t)=0[例]计算y(t)=p1(t)*p1(t)。)(1tp0.5-0.51t)(1pc)0t1d)t1tttyt+1d)(5.05.0y(t)=0a)t1b)1t0tttyt++1d)(5.05.0y(t)=011-1)()(11tptpt[例]计算y(t)=p1(t)*p1(t)。练习1:u(t)u(t)练习2:计算y(t)=x(t)h(t)。)(txt101)(tht201)(tyt20113tt3=r(t)2.卷积积分的性质(1)交换律x1(t)*x2(t)=x2(t)*x1(t)(2)分配律[x1(t)+x2(t)]*x3(t)=x1(t)*x3(t)+x2(t)*x3(t)(3)结合律[x1(t)*x2(t)]*x3(t)=x1(t)*[x2(t)*x3(t)](4)平移特性已知x1(t)*x2(t)=y(t)则x1(tt1)*x2(tt2)=y(tt1t2)(5)展缩特性)(1)()(21atyaatxatx二、卷积的性质平移特性已知x1(t)*x2(t)=y(t)则x1(tt1)*x2(tt2)=y(tt1t2))()(2211ttxttxd)()(2211ttxtxd)()(21211tttxxt)(21ttty证明:二、卷积的性质展缩特性已知x1(t)*x2(t)=y(t)则)(1)()(21atyaatxatx证明:)()(21atxatxd)]([)(21taxaxd)()(121atxxaa)(1atya解:[例]利用平移特性及u(t)u(t)=r(t),计算y(t)=x(t)h(t)。)(txt101)(tht201)(tyt20113tt3y(t)=x(t)h(t)=[u(t)u(t1)][u(t)u(t2)]=u(t)u(t)u(t1)u(t)u(t)u(t2)+u(t1)u(t2)=r(t)–r(t1)r(t2)+r(t3)3.奇异信号的卷积(1)延时特性x(t)*(tT)=x(tT)(2)微分特性x(t)*'(t)=x'(t)(3)积分特性)(')()()(2)1(121txtxtxtx(4)等效特性)()(')1(21txtx)1(21)]()('[txtx)(d)()()()1(txxtutxt[例]已知y(t)=x1(t)x2(t),求y'(t)和y(1)(t)解:利用卷积的微分特性y'(t)=y(t)'(t)=[x1(t)x2(t)]'(t)y(1)(t)=y(t)u(t)=[x1(t)x2(t)]u(t)=x1'(t)x2(t)=x1(t)x2'(t)=x1(1)(t)x2(t)=x1(t)x2(1)(t)利用卷积的结合律利用卷积的积分特性利用卷积的结合律解:[例]利用等效特性,计算y(t)=x(t)h(t)。)(tht201)(tyt20113tt3)(txt101)1()(ththt201311x'(t)=(t)(t1)tththtytd)]1()([)(0x'(t)h(t)=h(t)h(t1)解:[例]计算下列卷积积分。)(e3)(e22tututt)2(e3)1(e2)2()1(2tututt)2(e3)1(e22tututt(1)(2)(3))(e3)(e22tututt(1)d)(e3)(e2)(2+tuut000dee6)(20tttt)()ee(62tutt)(e)(etututt)(e)()ee(1tuttuattt解:[例]计算下列卷积积分。(1)(2)(3)(2))2(e3)1(e2)2()1(2tututt利用卷积的平移性质和题(1)的结论)3()ee(6)3(2)3(tutt(3))2(e3)1(e22tututt)2(ee3)1(ee2)2(2)1(22tututt4)2()1(2e)2(e3)1(e2tututt)3()ee(e6)3(2)3(4tutt)(e3)(e22tututt)2(e3)1(e2)2()1(2tututt)2(e3)1(e22tututt

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功