系统抽样和分层抽样2.1.2系统抽样创设情境某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?一、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[N/n].(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。1)下列抽样中不是系统抽样的是()A、从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样B、工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈二、系统抽样的一般步骤(1)将总体编号。(2)将总体按编号进行分段.(3)在第一段用简单随机抽样确定起始个体的编号。(4)按照一定的规则抽取样本。【说明】从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。【例题精析】例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。(4)按照全班学生的身高进行编号,抽样距是8,然后进行抽样,你觉得这样做有代表性么?有在这样的问题中,你有什么发现吗?系统抽样的步骤为:(1)将总体中的N个个体编号;(2)将编号按一定的间隔(设为k)分段,当N/n(N为总体中的个体数,n为样本容量)是整数时,k=N/n;当N/n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N’能被n整除,这时k=N’/n,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l;(4)将编号为l,l+k,l+2k,···,l+(n–1)k的个体抽出.例2.某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查.如何采用系统抽样方法完成这一抽样?分析:因为624的10%约为62,624不能被62整除,为了保证“等距”分段,应先剔除4人.解:第一步将624名职工用随机方式进行编号;第二步从总体中剔除4人(剔除方法可用随机数表法),将剩下的620名职工重新编号(分别为000,001,002,···,619),并分为62段;第三步在第一段000,001,002,···,009这十个编号中用简单随机抽样确定起始号码l;第四步将编号为l,l+10,l+20,···,l+610的个体抽出,组成样本.练习1.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除个体的数目是()A.2B.3C.4D.5A练习2.要从1003名学生中选取一个容量为20的样本,试叙述系统抽样的步骤.解:第一步将1003名学生用随机方式编号为0000,0001,0002,···,1002;第二步从总体中剔除3个个体(剔除方法可用随机数表法);第三步将剩下的1000名学生重新编号(分别为000,001,002,···,999号),并平均分成20段;第四步在第一段000,001,002,···,049这50个编号中随机地抽取一个号码(可用抽签法或随机数表法)l,则编号为l+50,l+100,l+150,···,l+950的个体就可组成抽取的样本.练习3.试用系统抽样的方法从你校学生中抽取适当的样本,再对抽出的学生的两臂平展的长度及身高进行测量,分别计算两组数据的平均数.设计科学、合理的抽样方法,其核心问题是保证抽样公平,并且样本具有好的代表性.如果要调查我校高一学生的平均身高,由于男生一般比女生高,故用简单随机抽样或系统抽样,都可能使样本不具有好的代表性.对于此类抽样问题,我们需要一个更好的抽样方法来解决.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.分层抽样问题一个单位的职工500人,其中不到35岁的有125人,35到49岁的有280人,50岁以上的有95人。为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本。由于职工年龄与这项指标有关,试问:应用什么方法抽取?能在500人中任意取100个吗?能将100个份额均分到这三部分中吗?解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为,则在不到35岁的职工中抽125×1/5=25人;在35岁至49岁的职工中抽280×1/5=56人;在50岁以上的职工中抽95×1/5=19人.(4)综合每层抽样,就是所抽取的样本组成样本.(3)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取25,56,19人。思考:分层抽样的操作步骤如何?第一步,计算样本容量与总体的个体数之比.第四步,将各层抽取的个体合在一起,就得到所取样本.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.强调两点:(1)分层抽样是等概率抽样,它也是公平的。用分层抽样从个体为N的总体中抽取一个容量为n的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于。Nn(2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此它获取的样本更具代表性,在实用中更为广泛。2.分层抽样是按比例分别对各层进行抽样,再将各个子样本合并在一起构成所需样本.其中正确计算各层应抽取的个体数,是分层抽样过程中的重要环节.1.分层抽样利用了调查者对调查对象事先掌握的各种信息,考虑了保持样本结构与总体结构的一致性,从而使样本更具有代表性,在实际调查中被广泛应用.3.简单随机抽样是基础,系统抽样与分层抽样是补充和发展,三者相辅相成,对立统一.思考:简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?方法类别共同特点抽样特征相互联系适应范围简单随机抽样系统抽样分层抽样抽样过程中每个个体被抽取的概率相等将总体分成均衡几部分,按规则关联抽取总体由层次不同的几部分构成用简单随机抽样抽取起始号码总体中的个体数较少总体中的个体数较多总体由差异明显的几部分组成从总体中逐个不放回抽取用简单随机抽样或系统抽样对各层抽样阶段练习练习:某单位有职工200人,其中老年职工40人,现从该单位的200人中抽取40人进行健康普查,如果采用分层抽样进行抽取,则老年职工应抽取的人数为多少?2.某中学有180名教职员工,其中教学人员144人,管理人员12人,后勤服务人员24人,设计一个抽样方案,从中选取15人去参观旅游.用分层抽样,抽取教学人员12人,管理人员1人,后勤服务人员2人.思考:在分层抽样中,如果总体的个体数为N,样本容量为n,第i层的个体数为k,则在第i层应抽取的个体数如何计算?思考:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?调节样本容量,剔除个体.例:某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样分析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本。一试身手例.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?解:用分层抽样抽取样本.∵,即抽样比为20/500=1/25.∴200×1/25=8,125×1/25=5,50×1/25=2.故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.抽样步骤:①确定抽样比;②按比例分配各层所要抽取的个体数,O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人;③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本.比比谁最快1.(2007浙江高考,文13)某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为_____.比比谁最快2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7比比谁最快3.某城区有农民、工人、知识分子家庭共计2000家,其中农民家庭1800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法()①简单随机抽样②系统抽样③分层抽样A.②③B.①③C.③D.①②③比比谁最快4.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是______.比比谁最快5.某市的3个区共有高中学生20000人,且3个区的高中学生人数之比为2∶3∶5现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.