1超高墩大跨预应力混凝土连续刚构悬灌线型控制技术1前言1.1背景系统地实施桥梁施工控制的历史并不长。最早较系统地把工程控制理论应用到桥梁施工管理中的是日本。我国在现代桥梁施工控制技术方面的研究相对较晚,然而其发展较迅速。80年代后期,对斜拉桥施工监控技术进行了全面研究,已初步形成系统。但对于高墩大跨连续刚构桥的线型控制而言,由于其墩高、跨大的特点,高墩的日照温差空间扭曲、日照温差对大悬臂箱梁空间扭曲等方面对主结构线型控制影响的复杂问题没有现成的技术资料可以遵循,有待探索、研究。此外,在线型控制实施后改变合拢顺序及在边跨“T”构上进行不平衡悬浇施工对于线型控制的影响也缺乏现成的技术资料可以采用,必须进行探索、研究。1.2工程概况葫芦河特大桥是西部大通道包(头)北(海)线陕西境黄陵至延安段高速公路上的一座特大型桥梁,桥梁全长1468m。主桥为90m+3×160m+90m预应力混凝土连续刚构箱梁桥。主桥下部结构为双薄壁空心墩,钻孔灌注桩基础。上部由上下行的两个单箱单室箱形断面组成,箱梁根部高9.0m,跨中梁高3.5m,梁高按二次抛物线变化,采用纵、横、竖向三向预应力体系。箱梁顶板厚度为0.28m,底板厚度由跨中0.30m按二次抛物线变化至根部1.1m,箱梁顶板宽12.0m,底板宽6.5m,腹板厚度分别为0.4m、0.6m,桥墩范围内箱梁顶板厚0.5m,底板厚1.3m,腹板厚0.8m,除桥墩顶部箱梁内设4道横隔板外,其余均不设横隔板。主桥两幅连续刚构箱梁均采用挂篮悬臂浇筑法施工,各单“T”箱梁除0#块外,分20对梁段,即6×3.0+6×3.5+4×4.0+4×4.5m进行对称悬臂浇筑,0#块长12.0m,合拢段长2.0m。原设计合拢顺序为边跨→次边跨→中跨,由于边墩6#及11#墩均较高,施工难度很大,在主桥悬灌施工至10-13#节段时,确定在边孔采用对称配重方式利用既有挂篮悬臂浇筑不平衡段21#段,长度为4.5m,将边孔现浇段8.9m缩短为5.2m,边孔合拢段长改为1.2m,主桥合拢顺序改为为中跨→次边跨→边跨。箱梁平面位于R=2500m的曲线及直线上,竖向位于R=20000m的竖曲线上,桥梁横2坡为2.5%,桥梁纵坡为-2.5%,+2.5%的双向坡,采用挂篮悬臂浇筑施工,最大浇注块件的长度为4.5m,最大不平衡悬臂长度为77.5m,最大浇筑块件重量为163.0吨。主桥布置见图3-1所示,箱梁断面见图3-2所示。图3-1葫芦河特大桥主桥立面图1.3施工难点⑴本项目的主墩高度较高,7#、8#、9#、10#的墩高分别为80m、130m、138m、58m,主跨跨径为160m。最高墩高度为138m,最大跨径为160m的连续刚构桥,在本项目实施时尚未有可借鉴的施工经验,位居国内领先地位。由于墩高跨大,悬臂浇注时梁段的变形较大,且受日照温差、温度、预应力、临时荷载及混凝土的强度、弹性模量的影响,各节段的预抛值控制难度较大,线型控制的合拢精度要求高(横桥向为5mm,竖桥向为10mm)。梁段的合拢施工技术较为复杂,成桥后的线型及应力状态必须与设计相吻合。由于混凝土100200283502756502755027513035065027512012025080801812004040900502%7070208012002%1840170x42x4217030x30x3030图3-2主梁墩顶及跨中断面主要尺寸图(单位:cm)6#墩11#墩7#墩8#墩1300000138008000009#墩10#墩3的徐变影响,通车后跨中的挠度下沉较多,影响通车后的结构线型及使用,故必须采取可靠措施使得各“T”构在形成体系之前尽可能多的完成收缩和徐变。⑵本项目地处西部,太阳辐射强烈,且为超高墩大跨径的曲线连续刚构桥梁,由于项目的特殊地理位置,日照温差较大,而且主墩均为薄壁空心墩,主梁为箱梁,均为箱型结构。受日照温差影响后,薄壁空心高墩和悬臂箱梁不可避免将出现位移,而且该两种位移相互叠加后对最大悬臂状态下结构本身的安全和悬臂挂篮施工的线型控制将产生不可预料的影响,因此在施工过程中必须给予足够重视。温度变化对超高墩混凝土结构的受力与变形影响很大,并随温度的改变而改变。在不同时刻对结构状态进行量测,其结果是不一样的,如果在施工控制中忽略了该项因素,就必然难以得到结构的真实状态数据(与控制理想状态比较),从而也难以保证控制的有效性。⑶由于本项目在实施过程中,鉴于边跨现浇段的施工难度,变更为:改变合拢顺序,启用边跨顶板的纵向预应力束,在边跨采用挂篮悬臂浇筑不平衡段,缩短边跨现浇段的施工方法;此时,主桥悬臂施工已经实施,各主墩“T”构已浇筑块段见表3-1。此时改变施工方案及合拢顺序后,大大增加了悬臂施工的线型控制难度。这在国内也无可予以借鉴的经验,具有相当难度。表3-1改变方案后已浇筑完工节段主墩号已浇筑完工节段(截至2005年8月8日止)左幅右幅71198106913810138⑷在悬臂施工过程中,线型控制对于全桥的总体受力及使用寿命有重要的意义。线型控制可分为平面线型及竖向挠度控制两方面,而挠度控制极为重要。影响挠度的因素较多,而挠度控制将影响到合拢精度及全桥施工的成功与否,故必须对挠度进行精确的计算及严格的控制。可以说,线型控制的关键在于施工挠度控制。根据结构稳定性计算表明,对于138m高墩在最大双悬臂状态下时,结构的稳定性安全储备不高,因此,在施工过程中,必须加强应力与变形的监控,防止出现结构失稳。2超高墩大跨径连续箱梁刚构悬臂浇筑施工挠度控制2.1施工挠度控制基本程序由于箱梁在悬臂浇筑施工时受混凝土自重、日照、温度变化、墩柱压缩、挂篮本身的4弹性与非弹性变形、预应力钢束张拉等因素影响而产生挠度,混凝土自身还存在收缩、徐变等因素,也会使悬臂段发生变化,为使合拢后的线型及应力状态符合设计规范要求,最大限度地使实际的状态(应力与线型)与设计的相接近,必须对各悬臂施工节段的挠度、应力进行观测控制,以便在施工中及时调整有关的标高参数,为下节的模板安装提供数据预报,确定下节段的模板标高。各梁段施工时立模标高应考虑设计高程、预拱度、挂篮弹性非弹性变形、施工时温度影响、预应力钢束张拉、混凝土的容重及弹性模量等因素。立模标高应按下式进行确定:Hj=Hi+∑f1i+∑f2i+f3i+f4i+f5i,式中:Hi------设计标高∑f1i------由各梁段自重产生的在i节点的挠度总和∑f2i------由张拉预应力在i节点的挠度总和f3i------挂篮变形值f4i------混凝土的收缩徐变在i节点引起的挠度,按主跨跨中15cm考虑,其余按正弦分配变化,变化方程如下:次边跨及中跨分布方程为:Hy=150×sin(X×π/40)边跨分布方程为:Hy=150×sin(X1×π/0.618×45)Hy=150×sin(X2×π/0.372×45)上述方程中,其中Hy为预留的徐变沉降量,单位为mm;X为沿各“T”构纵向布置的横轴,坐标原点为0#块中心点,单位为m;X1为沿各“T”构纵向布置的横轴,坐标原点为0#块中心点,单位为m;X2为沿各“T”构纵向布置的横轴,坐标原点为边跨支点端头处,单位为m。f5i------使用荷载在i节点产生的弹性与非弹性挠度上述公式中,∑f1i,∑f2i,f4i,f5i,均由程序计算得出,并在实际实施过程中根据监测情况进行修正;f3i在挂篮加载施压后得出结果。2.2程序计算模型的确定本项目在实施过程中采用桥梁平面杆系分析程序GQJS进行分析计算,在计算模型中,主桥连续刚构共分为300个单元,其中预应力箱梁分为193个单元,每节段为一个单元,截面几何类型总数为35个;双薄壁墩及横撑分为107个单元;预应力钢束按不同的施工顺序及位置分为158组。箱梁每个节段的施工过程模拟为三个节段,即安装(转移)挂篮、5浇筑混凝土、张拉和转移锚固,其施工周期为安装(转移)挂篮3天,浇筑混凝土3天,张拉和转移锚固1天。整个主桥连续刚构的施工过程分为79个施工阶段,在模型中全桥的施工划分为80个阶段。计算模型中主要参数取值:C50混凝土设计强度Ra=28.5MPa,Rl=2.45MPa弹性模量E=35000MPa容重γ=25kN/m3预应力钢材标准强度Ryb=1860MPa钢束弹性模量Ey=1.9×105MPa锚下张拉控制应力σk=0.75×Ryb=1395MPa孔道偏差系数0.001松弛率0.045摩阻率0.19锚具变形△=0.006mGQJS可以计算出各节段的各工况下的施工梁段的变形值,并可以将计算的结果以各个单元左右截面的内力值和位移值的形式输出到电子文档中。在施工过程中,可以将此结果作为桥梁结构的理想状态,预测下一施工梁段的预拱度,确定立模标高。还可以将计算结果作为确定桥梁结构的受力状态及稳定性,判断桥梁结构是否安全的依据。由于在施工过程中,箱梁的实际结构尺寸、临时施工荷载,混凝土的弹性模量、收缩徐变、预应力大小与损失等情况与设计往往有差别,这种差别对结构的总体受力和成桥线型有很大的影响,因此有必要在施工过程中确定结构的实际几何尺寸、实测的弹性模量、实测容重等;此外,还应根据各施工阶段的实际龄期考虑混凝土的收缩、徐变。连续刚构桥在整个施工过程中结构位移和内力均产生很大变化,因此,必须密切注意桥梁在施工期间的稳定性。2.3标高监控点的设置2.3.10#块基准点的设置为施工方便,我们将水准点引至各主墩“T”构0#梁段上,便于施工中的测量需要。但考虑到各主墩的高度均较高,悬灌施工的上部荷载势必压缩各主墩,因此,各墩顶0#6梁段绝对高度必将下降,施工中,我们在满足施工精度的前提下,经过观测和计算,每隔3-4个节段,即对墩顶的0#段上的水准点高程进行修正。此外,由于主墩均为薄壁空心高墩,受日照温差的作用,主墩发生弯曲,墩顶产生较大的位移,因此,在确定各主墩“T”构0#梁段基准水准点时,必须选择在日照温差作用较小的时间段进行,一般选择在早8:00前进行。2.3.2各节段施工监控点的设置施工过程中,我们在每梁段的表面埋设钢筋头,作为各梁段挠度观测点进行检测。施工控制测点布置:在梁段端部顶板左右距翼缘板边各1.25m处、顶板中心分别埋设短钢筋(Φ12,顶部打磨光滑,比本梁段测处施工立模标高高出5mm~8mm)作为固定观测点。监控点离梁段前端10cm。见图3-3所示。图3-3监控点钢筋预埋示意图(单位为cm)2.4各相关参数的测定我们在实际施工开始前,对上述涉及到的设计参数取值进行了测定,通过世纪的测定,我们发现,下列几个参数与设计计算模型中的取值偏离较大。此外,为得出挂篮的弹性与非弹性的变形值,我们对挂篮也进行了荷载试验,取得了挂篮在不同节段的变形。2.4.1混凝土的容重及弹性模量的测定混凝土特性中对竖向挠度有影响的主要为混凝土的容重及弹性模量等因素。主桥箱梁混凝土设计标号为C50混凝土,主墩均较高,要求混凝土有较好的和易性,因此优选碎石粒径为5-25mm,中粗砂细度模数为2.6~2.9,理论配合比为水泥:砂:碎石:水:外加剂=1:1.39:2.28:0.33:0.012。外加剂采用HJUNF-2A高效减水剂,塌落度为190mm。经试验测定,混凝土容重为24.7kN/m3,混凝土弹性模量和混凝土强度经现场测试,其结果如表3-2所示。7表3-2混凝土强度及弹性模量而计算模型中的取值为:C50混凝土容重为25kN/m3,混凝土的弹性模量为3.5×104MPa。混凝土容重与模型计算中的取值差别不大;但弹性模量实测值与设计差值较大。2.4.2孔道摩阻损失及局部偏差影响系数施工时,对挠度有较大影响的纵向预应力钢束和腹板下弯束。顶板钢束及边孔合拢束腹板下弯束采用19Φj15.24钢绞线;边孔及中孔底板采用16Φj15.24钢绞线。所有预应力管道均采用钢波纹管预埋成形,施工中严格按照设计及规范,保证弯曲坐标和弯曲角度,加强管道定位钢筋,保证管道顺畅,以减少摩阻损失。但在实际施工过程中,由于桥梁处于曲线上,预应力管道摩阻损失不可避免地存在,并且往往高于设计提供的摩阻数据。沿桥轴线方向设计的钢束所