《微积分》(中国商业出版社经管类)课后习题答案习题七(A)1.在空间直角坐标系中,下列方程表示什么形状的图形.(1)22yxz(2)042222yxzyx(3)2xy(4)124222zyx(5)0222yzx(6)2222zyx(7)0)1(222zyx(8)xzy22解:(1)旋转抛物面.(2)以(1,2,0)为原点5为半径的球面.(3)抛物线柱.(4)以2),2,1(为中心的椭球面.(5)旋转抛物面.(6)圆锥面.(7)一个点(8)双曲抛物面.2.给定两点3),1-,2(1P,5),0,3(2P,求(1)1P与2P之间距离21PP;(2)线段21PP的垂直平分面的方程;(3)以2P为中心,21PP为半径的球面方程.解:(1)30)()()(22122122121zzyyxxPP.(2)中点4),,21(021P;垂直向量2),1,1(;方程为:0)2(2)21()21(zyx.(3)30)5()3(222zyx.3.求下列函数定义域,并画出定义域示意图.(1)2241yxz(2))ln(22yxz(3)1arcsinxyz(4)2221)ln(yxxyz(5))1ln(4222yxyxz(6)yxz2(7)yxyxz11(8)94122yxz解:(1)2211010122yx:yx定义域(2)022yx定义域:yx(3)200111xyxxy(4)1010222222yxxyyxxy(5)41041101222222222yxyxyxyxyx(6)42000xyyyx(7)yxyxyx00且yx(8)332236499412222yxyxyx4.设xyyxyxyxf22),(,求),(yxf解:令yxv,yxu;434)()(2)()().(222222vuyxyxyxyxvuf所以43),(22yxyxf5.设xxyxyxxxyxfln)ln(ln,ln2,求),(yxf.解:令xyu,lnxu则uuveyex,所以uvveueveveevufuuuuulnln)(2,所以yxyeyxfxln)(,6.计算下列函数在给定点处的偏导数;(1)xyzarctan,求)1,1(,)1,1(yxzz;(2)yxyxz,求)2,1(,)2,1(yxzz;(3)2eyxz,求)0,1(,)0,1(yxzz;(4)zxyu)1(,求3),2,1(xu,3),2,1(yu,3),2,1(zu;(5)3tan)1(xyxxyz,求0),1(xz,0),1(yz;(6)yxxyyxzsinsin1coscos,求0),0(xz,0),0(yz.解:(1)21)1,1(1.)(11)1,1(2xxyzx21)1,1(1.)(11)1,1(2xxyzy(2)94)2,1()()()2,1(2yxyxyxzx92)2,1()()()()2,1(2yxyxyxzy(3)eezyxx)1,0()1,0(20)1,0(2.)1,0(2yezyxy(4)54)3,2,1()1()3,2,1(1yxyzuzx27)3,2,1()1()3,2,1(1xxyzuzy3ln27)3,2,1()ln()1()3,2,1(xyxxyzuzz(5))0,1()(31).((sco1).1(tan)0,1(2343133xyxyxyxyxxyyzx1)0,1(1)(31(sco1).1()0,1(343xxyxyxxzy(6)1)sinsin1(cos)coscos()sinsin1)(sin(cos)0,0(2yxxxyyxyxxyyzx1)sinsin1(cos)coscos()sinsin1)(cossin()0,0(2yxyxyyxyxxyxzy7.求下列函数的一阶偏导数(1)yxxyz2(2)yxzarctan(3)3yxz(4))lnln(yxz(5))sin(tanxyxyz(6)xyyxz1arctan(7)xyyxz)sin((8)zyxu解:(1)22,2yxxzyxyzyx(2)2222222)1(,)1(1yxxyxyxzyxyyxyzyx(3)436232233.,3yxyyxzyxzyx(4))lnln(yxzyxxzln1yyxyz1.ln1(5))sin(.tanxyxyz)cos(.tan.)sin()..(sec22xyxyyxyxyxyxz)cos(tansec).sin(.12xyxyxxyxyxyz(6)xyyx1arctan22211)1()).(()1(.)(11xxyyyxxyxyxyxxz22211)1())(()1()1(11yxyxyxxyxyyxyz(7)xyyxz)sin()sin1.)sinln(..()sinln(yxxyyxyexzyxxyyxxyxyxyxysin)sinln(.)sin.(yxyxyyxxeyzyxxysincos.)sinln(..)sinln(yxyyyxyxxxysincos)sinln()sin.((8)zyxu11...1zzzyxyzxzyxuzyxyzyu.yxyxzuzln8.设xyyxyxzln,验证方程0yzyxzx解:证明:yzyxzx01..ln)()()(..ln)()()(222xyxyxyxxyyxyxyxyxyxyyxyxxyyxyxyxx9.设)(byaxfz,f可导,验证方程0yzaxzb解:证明:fbbyaxyfafabyaxxfbyzaxzb)()(0)()(abfabf10.设2eyxz,验证方程02yzyxzx解:证明:021.224222yxyyeyxeyzyxzxyxyx11.设yxfz1ln,其中f为可微函数,验证方程02yzyxzx解:证明:2221)1(ln1)1(lnyfyxyfyxfyxxfxyzyxzx0ff12.设)tantanln(tanzyxu,验证方程22sin2sin2sinzzuyyuxxu解:证明:zzuyyuxxu2sin2sin2sinzzyyxxzyx2sincos12sincos12sincos1tantantan12222tantantantantantan2zyxzyx13.求下列函数的二阶编导数yxzyzxz22222,,(1)22yxxz(2)xyzarctan(3))ln(yxxz(4)xyeyxzsin)(cos(5)yxyxyxzarctanarctan22(5)2222yxyxz解:(1)32222223222223222222)()3(2,)()3(2,)()3(2yxyxxyzyxyxyyxzyxyxxxz(2)2222222222222222)(2,)(,)(2yxxyyzyxxyyxzyxxyxz(3)22222222)(,)(,)(2yxxyzyxyyxzyxyxxz(4))sincos3sin3cos(e3222xyxyxyxxzxy)sincos2sinsin2cos2(e22xxyxxyxxxyxyxzxyxxxyxxyzxycossin)2(e2222(5)22222222222222arctan2,,2arctan2yxxyyxyzyxyxyxzyxxyxyxz(6)3222222232222232222222)()3(4,)()(8,)()3(4yxxyxyzyxyxxyyxzyxxyyxz14.求下列函数的全微分(1)xyz(2)xyzarcsin(3)xyxzy2(4)yxyxzarctan(5)yyxzcos(6))sin(e22xyxyzyx(7)xyyxze122(8)2222arctanyxyxz(9)yzxyuee(10)xyzu(11)zxyu)((12)xyyxzarctan-22e)(解:(1)dyxxydxxyxydyyzdxxzdz1)(21.)(212122(2)dyxxydxxyxydyyzdxxzdz1)(11)(11222(3)dyyxxxdxxyyxdyyzdxxzdzyy)ln()(21211(4)dyyxyxyxyxyxdxyxyyxyxdyyzdxxzdz2222)(.)(11)(2.)(11(5)dyyyxyyxydxyxdyyzdxxzdzsincos)(21cos)(212121(6)dyxyxxyxedxxyyyxyedyyzdxxzdzyxyx)cos(2.)cos(2.2222(7)dyyxxeyxyedxyxyeyxxedyyzdxxzdzxyxyxyxy2222222222)(2)(2(8)dzyedyyexedxxedzzudyyudxxuduxyxyxyxy1)1.1(1.22(9)dxxyxyxyxxyxyxyxyxdyyzdxxzdz2)()()(2)(21.1122222222122222222dxyyxyxyxyyxyxyxyx2)()()(2)(21.1122222222122222222(10)dzxyzzdyxzzdxyzdzzudyyudxxuduxyxyxy1lnln(11)dzxyzdyxyxyxdxxyxyydzzudyyudxxuduzzz1)()ln()()ln()((12)dxxyxyeyxxedyyzdxxzdzxyxy22arctan22arctan.)(11)(2dyxxyeyxyexyxy1.)(11)(22ar