立体几何中的向量方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.2.1立体几何中的向量方法——方向向量与法向量如图,l为经过已知点A且平行于非零向量a的直线,那么非零向量a叫做直线l的方向向量。lAPa1.直线的方向向量直线l的向量式方程换句话说,直线上的非零向量叫做直线的方向向量APta一、方向向量与法向量2、平面的法向量AalP平面α的向量式方程0aAP换句话说,与平面垂直的非零向量叫做平面的法向量oxyzABCO1A1B1C1例1.如图所示,正方体的棱长为1(1)直线OA的一个方向向量坐标为___________(2)平面OABC的一个法向量坐标为___________(3)平面AB1C的一个法向量坐标为___________(-1,-1,1)(0,0,1)(1,0,0)例2.在空间直角坐标系中,已知(3,0,0),(0,4,0)AB,(0,0,2)C,试求平面ABC的一个法向量.(4,3,6)n解:设平面ABC的一个法向量为(,,)nxyz则nABnAC,.∵(3,4,0)AB,(3,0,2)AC∴(,,)(3,4,0)0(,,)(3,0,2)0xyzxyz即340320xyxz∴3432yxzx取4x,则(4,3,6)n∴(4,3,6)n是平面ABC的一个法向量.总结:如何求平面的法向量⑴设平面的法向量为(,,)nxyz⑵找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)aabcbabc⑶根据法向量的定义建立关于,,xyz的方程组00nanb⑷解方程组,取其中的一个解,即得法向量.练习如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=1,E是PC的中点,求平面EDB的一个法向量.ABCDPE解:如图所示建立空间直角坐标系.(0,0,0),(0,0,1),11(0,,)22PE依题意得DB(1,1,0)11(0,,)22DEDB=(1,1,0)XYZ设平面EDB的法向量为(,,1)nxy,nnDEDB则1101,1,1220ynxy于是因为方向向量与法向量可以确定直线和平面的位置,所以我们可以利用直线的方向向量与平面的法向量表示空间直线、平面间的平行、垂直、夹角、距离等位置关系.用向量方法解决立体问题二、立体几何中的向量方法——证明平行与垂直设直线l,m的方向向量分别为,ab,平面,的法向量分别为,uv,则(1)//lm//abab;mlab(一).平行关系:a设直线l,m的方向向量分别为,ab,平面,的法向量分别为,uv,则uαaAC②∥axAByAD③(2)//l①au0au;vuαβ设直线l,m的方向向量分别为,ab,平面,的法向量分别为,uv,则(3)//①//uv.uvu(1)lm0abab(二)、垂直关系:设直线l,m的方向向量分别为,ab,平面,的法向量分别为,uv,则lmab设直线l,m的方向向量分别为,ab,平面,的法向量分别为,uv,则(2)l//auaulauABC设直线l,m的方向向量分别为,ab,平面,的法向量分别为,uv,则3()0uvuvαβuv例1.用向量方法证明定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行已知直线l与m相交,,,lm,lm∥∥.求证∥l,ma,,.bv证明取的方向向量取,的法向量u,lm∥∥,avbvvuαβab,,b又a不共线所以v是的一个法向量于是v同时是、的一个法向量.∥lm例2四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,PD=DC=6,E是PB的中点,DF:FB=CG:GP=1:2.求证:AE//FG.ABCDPGXYZFEA(6,0,0),F(2,2,0),E(3,3,3),G(0,4,2),AE=(-3,3,3),FG=(-2,2,2)32AE=FGAE//FG证:如图所示,建立空间直角坐标系.//AEFGAE与FG不共线几何法呢?例3四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点,(1)求证:PA//平面EDB.ABCDPEXYZG解1立体几何法ABCDPEXYZG解2:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1(1)证明:连结AC,AC交BD于点G,连结EG(1,0,0),(0,0,1),11(0,,)22APE依题意得G11(,,0)2211(1,0,1),(,0,)22PAEGEGPAEGPA//2,即所以,EGEDBPAEDB而平面且平面EDBPA平面所以,//ABCDPEXYZ解3:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1(1)证明:11(1,0,0),(0,0,1),(0,,),22APE依题意得B(1,1,0)(1,0,1),PAPAEDB而平面EDBPA平面所以,//11(0,,)22DEDB=(1,1,0)设平面EDB的法向量为(,,1)nxy,nnDEDB则1101,1,1220ynxy于是0PAnPAnABCDPEXYZ解4:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1(1)证明:11(1,0,0),(0,0,1),(0,,),22APE依题意得B(1,1,0)(1,0,1),PAPAEDB而平面EDBPA平面所以,//11(0,,)22DEDB=(1,1,0)PAxDEyDB设解得x=-2,y=12PADEDB即PADEDB于是、、共面A1xD1B1ADBCC1yzEF是BB1,,CD中点,求证:D1F1111DCBAABCD例4正方体中,E、F分别平面ADE.证明:设正方体棱长为1,为单位正交基底,建立如图所示坐标系D-xyz,1,DADCDD以,1(1,0,0)(1,1,,)2DADE,11(0,,1)2DF00DADE11则DF,DF所以1DFADE平面DADE11则DF,DF.A1xD1B1ADBCC1yzEF是BB1,,CD中点,求证:D1F1111DCBAABCD例4正方体中,E、F分别平面ADE.证明2:,E是AA1中点,1111DCBAABCD例5正方体平面C1BD.证明:E求证:平面EBD设正方体棱长为2,建立如图所示坐标系平面C1BD的一个法向量是E(0,0,1)D(0,2,0)B(2,0,0)(2,0,1)EB(0,2,1)ED设平面EBD的一个法向量是(,,1)uxy0uEBuED由11(,,1)22u得1(1,1,1)vCA0,uv平面C1BD.平面EBD证明2:E,E是AA1中点,1111DCBAABCD例5正方体平面C1BD.求证:平面EBD

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功