11、(2009全国卷Ⅰ理)在ABC中,内角A、B、C的对边长分别为a、b、c,已知222acb,且sincos3cossin,ACAC求b2、(2009北京理)在ABC中,角,,ABC的对边分别为,,,3abcB,4cos,35Ab。(Ⅰ)求sinC的值;(Ⅱ)求ABC的面积.3、(2009山东卷理)(本小题满分12分)设函数f(x)=cos(2x+3)+sin2x.(1)求函数f(x)的最大值和最小正周期.(2)设A,B,C为ABC的三个内角,若cosB=31,1()24cf,且C为锐角,求sinA.24、(2009江苏卷)设向量(4cos,sin),(sin,4cos),(cos,4sin)abc(1)若a与2bc垂直,求tan()的值;(2)求||bc的最大值;(3)若tantan16,求证:a∥b5、(江西卷17)在ABC中,角,,ABC所对应的边分别为,,abc,23a,tantan4,22ABC2sincossinBCA,求,AB及,bc6、(2009全国卷Ⅱ文)(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,23cos)cos(BCA,acb2,求B.37、36.(2009江西卷文)在△ABC中,,,ABC所对的边分别为,,abc,6A,(13)2cb.(1)求C;(2)若13CBCA,求a,b,c.8、(2009江西卷理)△ABC中,,,ABC所对的边分别为,,abc,sinsintancoscosABCAB,sin()cosBAC.(1)求,AC;(2)若33ABCS,求,ac.9、(2009湖北卷文)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且Acasin23(Ⅰ)确定角C的大小:(Ⅱ)若c=7,且△ABC的面积为233,求a+b的值。410.(2009湖南卷理)在ABC,已知2233ABACABACBC,求角A,B,C的大小.11、(2009陕西卷理)已知函数()sin(),fxAxxR(其中0,0,02A)的图象与x轴的交点中,相邻两个交点之间的距离为2,且图象上一个最低点为2(,2)3M.(Ⅰ)求()fx的解析式;(Ⅱ)当[,]122x,求()fx的值域.12、(2008山东)已知函数f(x)=)0,0)(cos()sin(3πxx为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.2π(Ⅰ)求f(8π)的值;(Ⅱ)将函数y=f(x)的图象向右平移6π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.513、(2008广东)已知函数()sin()(00π)fxAxA,,xR的最大值是1,其图像经过点π132M,.(1)求()fx的解析式;(2)已知π02,,,且3()5f,12()13f,求()f的值.14、(2007湖北)已知函数2π()cos12fxx,1()1sin22gxx.(I)设0xx是函数()yfx图象的一条对称轴,求0()gx的值.(II)求函数()()()hxfxgx的单调递增区间.15、(2007江西)如图,函数π2cos()(0)2yxxR,≤≤的图象与y轴交于点(03),,且在该点处切线的斜率为2.(1)求和的值;(2)已知点π02A,,点P是该函数图象上一点,点00()Qxy,是PA的中点,当032y,0ππ2x,时,求0x的值.616、(2009福州三中)已知)2sin3,(cos),1,cos2(mxxbxa,f(x)=ba。(1)求函数在[0,]上的单调增区间;(2)当]6,0[x时,f(x)的最大值为4,求实数m的值。17、(2009枣庄一模)已知函数)0)(2sin(sin3sin)(2xxxxf的最小正周期为(1)求);(xf(2)当)(,]2,12[xfx求函数时的值域。18、(2009长郡中学第六次月考)已知函数aRaaxxxxf,(2cos)62sin()62sin()(为常数).(1)求函数)(xf的最小正周期;(2)求函数)(xf的单调递增区间;(3)若]2,0[x时,)(xf的最小值为2,求a的值.719、(2009上海奉贤区模拟考)已知函数.3cos33cos3sin)(2xxxxf(1)将()fx写成)sin(xA的形式,并求其图象对称中心的横坐标;(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求角x的范围及此时函数()fx的值域.20、(2009枣庄一模)已知函数)0)(2sin(sin3sin)(2xxxxf的最小正周期为(1)求);(xf(2)当)(,]2,12[xfx求函数时的值域。21、(安徽卷)已知310,tancot43(Ⅰ)求tan的值;(Ⅱ)求225sin8sincos11cos822222sin2的值。822、(安徽卷)已知40,sin25(Ⅰ)求22sinsin2coscos2的值;(Ⅱ)求5tan()4的值。23、(2002全国新课程理,天津理)已知232,534cos奎屯王新敞新疆求42cos的值奎屯王新敞新疆24、(2008四川文、理)求函数2474sincos4cos4cosyxxxx的最大值与最小值。925、(2007四川文、理)已知0,1413)cos(,71cos且2,(Ⅰ)求2tan的值.(Ⅱ)求.26、(2009宁夏海南卷理)(本小题满分12分)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。27、(2009辽宁卷理)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为075,030,于水面C处测得B点和D点的仰角均为060,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km,21.414,62.449)1028、(2009福建卷理)(本小题满分13分)如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinx(A0,0)x[0,4]的图象,且图象的最高点为S(3,23);赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定MNP=120o(I)求A,的值和M,P两点间的距离;(II)应如何设计,才能使折线段赛道MNP最长?29、(海南宁夏理17)如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.现测得BCDBDCCDs,,,并在点C测得塔顶A的仰角为,求塔高AB.30、(山东理20)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A处时,乙船位于甲船的北偏西105方向的1B处,此时两船相距20海里,当甲船航行20分钟到达2A处时,乙船航行到甲船的北偏西120方向的2B处,此时两船相距102海里,问乙船每小时航行多少海里?北1B2B1A2A120105乙甲111、解法一:在ABC中sincos3cossin,ACAC则由正弦定理及余弦定理有:2222223,22abcbcaacabbc化简并整理得:2222()acb.又由已知222acb24bb.解得40(bb或舍).解法二:由余弦定理得:2222cosacbbcA.又222acb,0b。所以2cos2bcA…………………………………①又sincos3cossinACAC,sincoscossin4cossinACACACsin()4cossinACAC,即sin4cossinBAC由正弦定理得sinsinbBCc,故4cosbcA………………………②由①,②解得4b。2、解(Ⅰ)∵A、B、C为△ABC的内角,且4,cos35BA,∴23,sin35CAA,∴231343sinsincossin32210CAAA.(Ⅱ)由(Ⅰ)知3343sin,sin510AC,又∵,33Bb,∴在△ABC中,由正弦定理,∴sin6sin5bAaB.∴△ABC的面积1163433693sin32251050SabC3、解(1)f(x)=cos(2x+3)+sin2x.=1cos213cos2cossin2sinsin233222xxxx所以函数f(x)的最大值为132,最小正周期.12(2)()2cf=13sin22C=-41,所以3sin2C,因为C为锐角,所以3C,又因为在ABC中,cosB=31,所以2sin33B,所以2113223sinsin()sincoscossin232326ABCBCBC.4、5解:由tantan422ABC得cottan422CC∴cossin224sincos22CCCC∴14sincos22CC∴1sin2C,又(0,)C∴566CC,或由2sincossinBCA得2sincossin()BBBC即sin()0BC∴BC6BC2()3ABC由正弦定理sinsinsinabcABC得131sin2232sin32BbcaA6、解:由cos(AC)+cosB=32及B=π(A+C)cos(AC)cos(A+C)=32,cosAcosC+sinAsinC(cosAcosCsinAsinC)=32,sinAsinC=34.又由2b=ac及正弦定理得2sinsinsin,BAC故23sin4B,3sin2B或3sin2B(舍去),于是B=3π或B=23π.又由2bac知ab或cb所以B=3π。7、解:(1)由(13)2cb得13sin22sinbBcC则有55sin()sincoscossin666sinsinCCCCC=1313cot2222C得cot1C即4C.(2)由13CBCA推出cos13abC;而4C,即得2132ab,14则有2132(13)2sinsinabcbacAC解得2132abc8、解:(1)因为sinsintancoscosABCAB,即sinsinsincoscoscosCABCAB,所以sincossincoscossincossinCACBCACB,即sincoscossincossinsincosCACACBCB,得sin()sin()CABC.所以CABC,或()CABC(不成立).即2CAB,得3C,所以.23BA又因为1sin()cos2BAC,则6BA,或56BA(舍去)得5,412AB(2)162sin3328ABCSacBac,又sinsinacAC,