LINGO教程第1页共55页LINGO是用来求解线性和非线性优化问题的简易工具。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。§1LINGO快速入门当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGOModel–LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。下面举两个例子。例1.1如何在LINGO中求解如下的LP问题:0,6002100350..32min212112121xxxxxxxtsxx在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2=350;x1=100;2*x1+x2=600;然后点击工具条上的按钮即可。例1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。产销单位运价如下表。单位销地运价产地B1B2B3B4B5B6B7B8产量A16267425960A24953858255LINGO教程第2页共55页A35219743351A47673927143A52395726541A65522814352销量3537223241324338设xij是6个产地运往8个销地的量;则总费用Min,ijijijcxs.t.81(),1,...,6ijjxclii61(),1,...,8ijixxljj使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/:capacity;vendors/v1..v8/:demand;links(warehouses,vendors):cost,volume;endsets!目标函数;min=@sum(links:cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I):volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J):volume(I,J))=capacity(I));!这里是数据;data:capacity=605551434152;demand=3537223241324338;cost=626742954953858252197433767392712395726555228143;enddataend然后点击工具条上的按钮即可。为了能够使用LINGO的强大功能,接着第二节的学习吧。LINGO教程第3页共55页§2LINGO中的集对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。LINGO允许把这些相联系的对象聚合成集(sets)。一旦把对象聚合成集,就可以利用集来最大限度的发挥LINGO建模语言的优势。现在我们将深入介绍如何创建集,并用数据初始化集的属性。学完本节后,你对基于建模技术的集如何引入模型会有一个基本的理解。2.1为什么使用集集是LINGO建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。2.2什么是集集是一群相联系的对象,这些对象也称为集的成员。一个集可能是一系列产品、卡车或雇员。每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。属性值可以预先给定,也可以是未知的,有待于LINGO求解。例如,产品集中的每个产品可以有一个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。LINGO有两种类型的集:原始集(primitiveset)和派生集(derivedset)。一个原始集是由一些最基本的对象组成的。一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。2.3模型的集部分集部分是LINGO模型的一个可选部分。在LINGO模型中使用集之前,必须在集部分事先定义。集部分以关键字“sets:”开始,以“endsets”结束。一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分。一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须定义了它们。2.3.1定义原始集为了定义一个原始集,必须详细声明:·集的名字·可选,集的成员·可选,集成员的属性定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容可选。下同,不再赘述。Setname是你选择的来标记集的名字,最好具有较强的可读性。集名字必须严格符合标准命名规则:以拉丁字母或下划线(_)为首字符,其后由拉丁字母(A—Z)、下划线、阿拉伯数字(0,1,…,9)组成的总长度不超过32个字符的字符串,且不区分大小写。注意:该命名规则同样适用于集成员名和属性名等的命名。Member_list是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。①当显式罗列成员时,必须为每个成员输入一个不同的名字,中间用空格或逗号搁开,允许混合使用。例2.1可以定义一个名为students的原始集,它具有成员John、Jill、Rose和Mike,属性有sex和age:sets:students/JohnJill,RoseMike/:sex,age;endsets②当隐式罗列成员时,不必罗列出每个集成员。可采用如下语法:LINGO教程第4页共55页setname/member1..memberN/[:attribute_list];这里的member1是集的第一个成员名,memberN是集的最末一个成员名。LINGO将自动产生中间的所有成员名。LINGO也接受一些特定的首成员名和末成员名,用于创建一些特殊的集。列表如下:隐式成员列表格式示例所产生集成员1..n1..51,2,3,4,5StringM..StringNCar2..car14Car2,Car3,Car4,…,Car14DayM..DayNMon..FriMon,Tue,Wed,Thu,FriMonthM..MonthNOct..JanOct,Nov,Dec,JanMonthYearM..MonthYearNOct2001..Jan2002Oct2001,Nov2001,Dec2001,Jan2002③集成员不放在集定义中,而在随后的数据部分来定义。例2.2!集部分;sets:students:sex,age;endsets!数据部分;data:students,sex,age=John116Jill014Rose017Mike113;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行。在集部分只定义了一个集students,并未指定成员。在数据部分罗列了集成员John、Jill、Rose和Mike,并对属性sex和age分别给出了值。集成员无论用何种字符标记,它的索引都是从1开始连续计数。在attribute_list可以指定一个或多个集成员的属性,属性之间必须用逗号隔开。可以把集、集成员和集属性同C语言中的结构体作个类比。如下图:集←→结构体集成员←→结构体的域集属性←→结构体实例LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO求解器求解。因此,集属性的值一旦在模型中被确定,就不可能再更改。在LINGO中,只有在初始部分中给出的集属性值在以后的求解中可更改。这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的。2.3.2定义派生集为了定义一个派生集,必须详细声明:·集的名字·父集的名字·可选,集成员·可选,集成员的属性可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字。parent_set_list是已定义的集的列表,多个时必须用逗号隔开。如果没有指定成员列表,那么LINGO会自动创建父集成员的所有组合作为派生集的成员。派生集的父集既可以是原始集,也可以是其它的派生集。LINGO教程第5页共55页例2.3sets:product/AB/;machine/MN/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的成员。列表如下:编号成员1(A,M,1)2(A,M,2)3(A,N,1)4(A,N,2)5(B,M,1)6(B,M,2)7(B,N,1)8(B,N,2)成员列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集。如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集。同原始集一样,派生集成员的声明也可以放在数据部分。一个派生集的成员列表有两种方式生成:①显式罗列;②设置成员资格过滤器。当采用方式①时,必须显式罗列出所有要包含在派生集中的成员,并且罗列的每个成员必须属于稠密集。使用前面的例子,显式罗列派生集的成员:allowed(product,machine,week)/AM1,AN2,BN1/;如果需要生成一个大的、稀疏的集,那么显式罗列就很讨厌。幸运地是许多稀疏集的成员都满足一些条件以和非成员相区分。我们可以把这些逻辑条件看作过滤器,在LINGO生成派生集的成员时把使逻辑条件为假的成员从稠密集中过滤掉。例2.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age.;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend,[0,1]之间的数。;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq#0:friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf)|friend(&1,&2)#ge#0.5:x;endsetsdata:sex,age=116014017013;friend=0.30.50.6;enddata用竖线(|)来标记一个成员资格过滤器的开始。#eq#是逻辑运算符,用来判断是否“相等”,可参考§4.&1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有成员;&2可看作派生集的第2个原始父集的索引,它取遍该原始父集的所有成员;&3,&4,……,以此类推。注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效。因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和。总的来说,LINGO可识别的集只有两种类型:原始集和派生集。LINGO教程第6页共55页在一个模型中,原始集是基本的对象,不能再被拆分成更小的组分。原始集可以由显式罗列和隐式罗列两种方式来定义。当用显式罗列方式时,需在集成员列表中逐个输入每个成员。当用隐式罗列方式时,只需在集成员列表中输入首成员和末成员,而中间的成员由LINGO产生。另一方面,派生集是由其它的集来创建。这些集被称为该派生集的父集(原始集或其它的派生集)。一个派生集既可以是稀疏的,也可以是稠密的。稠密集包含了父集成员的所有组合(有时也称为父集的笛卡尔乘积)。稀疏集仅包含了父集的笛卡尔乘积的一个子集,可通过显式罗列和成员资格过滤器这两种方式来定义。显式罗列方法就是逐个罗列稀疏集的成员。成员资格过滤器方法通