第二章参数估计课后习题参考答案2.1设总体X服从二项分布nXXXppNB,,,,11,,21为其子样,求N及p的矩法估计。解:pNpXDNpXE1,令pNpSNpX12解上述关于N、p的方程得:2.2对容量为n的子样,对密度函数22(),0(;)0,0xxfxxx其中参数的矩法估计。解:1202()()aExxxdx22022()xxdx2321221333所以133ax其中121,21(),,,nnxxxxxxxn为n个样本的观察值。2.3使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm)232.50,232.48,232.15,232.52,232.53,232.30232.48,232.05,232.45,232.60,232.47,232.30试用矩法估计测量的真值和方差(设仪器无系统差)。XSpSXXpXN2221ˆˆˆ解:niiniiSXXnXDXXnXE12210255.014025.23212.4设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数10,1,xf的总体,试用矩法估计总体均值、总体方差及参数。解:4.22ˆ2,1,407.012.11001221XXdxxdxxxfXExfXXnSXnXniinii参数:总体方差:总体均值:2.5设nXXX,,,21为1N,的一个字样,求参数的MLE;又若总体为21N,的MLE。解:(1)XxnxxLxnxLexLxfexfniiniiiniiixniniixiniii111222121ˆ0,ln212ln2,ln21,,21,122(2)212124222122221221221211ˆ01212,ln121ln2ln2,ln21,,21,21222niiniiiniiixnniniixixnxnxLxnnxLexLxfexfniii2.6设总体X的密度函数为12(;),,,,nfxXXX为其样本,求下列情况下的MLE。(i),0,1,2,(;)!0,xexfxx其它0(ii)1,01(;)0,xxfx其它0(iii)1(),0(;)0,xxexfx其它已知(iv)1()/(),0(;)0,rxxerxfx其它r已知(v)1,0(;)0,xexfx其它0解:(i)112()!!!niiXnneLxxx121ln()lnln(!!!)niniLXnxxx11ln()101niiniidLXndXxn(ii)1111()nnniiiiLxx1ln()ln(1)lnniiLnx11111ln()ln01(ln)(ln)niinniiiidLnxdnxxn(iii)111()()niinxniiLxe11ln()ln()(1)lnnniiiiLnxx1111ln01()nniiiiniidLnnxxdxn(iv)111()()/(())niinxnrniiLxer11ln()ln(1)ln()nnnriiiiLrxxnr111ln()01,niininiiidLnrxdnrrxXnxx(v)111()niixnLe11ln()ln()niiLnx211ln()101,niiniidLnXdxxXn2.7设总体X的密度函数为10,1xxxf,nXXX,,,21为其子样,求参数的MLE及矩法估计。今得子样观察值为0.3,0.8,0.27,0.35,0.62,0.55,求参数的估计值。解:极大似然估计:234.0ln11ˆ0ln1,lnln1ln,ln1,,48.011111111niiniiiniiiniininiiniixnxnxLxnxLxxLxfxnX矩法估计:07.0211ˆ2111010XXdxxxdxxxfxE2.8在处理快艇的6次实验数据中,得到下列的最大速度值(单位:m/s)27,38,30,37,35.31,求最大艇速的数学期望与方差的无偏估计。解:X是总体期望XE的无偏估计smXnXEnii/33112*S是总体方差2XD的无偏估计221228/8.1811smXXnSnii2.9设总体2,~NX,nXXX,,,21为其子样。(1)求k,使211121ˆniiiXXk为2的无偏估计;(2)求k,使niiXXk11ˆ为的无偏估计。解:(1)221121112111121111knXXEnknXXkEniiniiniii即k=2(n-1)(2)ijjiiXnXnnXX1101111111nnnnEXnEXnnXnEXnnEXXEijjiijjii2222222221111111nnnnnnXDnXDnnXnDXnnDXXDijiiijjii所以21,0~nnNXXinnXXEi121211211nnknnknXXEkEnii12nnk2.10设总体123(,1),,,XNXXX为一样本,试证明下述三个估计变量11232123312313151021153412111362XXXXXXXXX都是的无偏估计量,并求出每一估计量的方差,问哪一个最小?证:1123131()()()()5102EEXEXEX131()5102同理:2123115()()()()3412EEXEXEX115()34123123111()()()()362EEXEXEX111()362123,,是的无偏估计量。由于22212222222313119()()()()51025011525()()()()3412771117()()()()36218DDD2()D最小。2.11设ˆ是参数的无偏估计,且有0ˆD,试证2ˆ不是2的无偏估计。解:ˆ是参数的无偏估计,即ˆE又因为0ˆ,ˆˆˆ22DEED所以2222ˆˆˆˆDEDE综上所述:2ˆ不是2的无偏估计2.12设总体21(,),,,nXNXX已知,为一样本,证明112niiXn为的无偏估计,且效率为12。证明:设iiyx则2(0,)iyN0()2()iiiiEyyfydy2220122iyiiyedy2111()()22niiiEXEynn122nn即,112niiXn为的无偏估计21111()22nniiiiDXDXnn222122212()222(2)2niiiniEXEXnnn由于2(,)XN则,22()2221(,,)211()(ln2ln)ln(,,)222xfxexfx231()x22224222242ln(,,)13()ln(,,)132()()()fxxfxIEEx22111()(2)22()()2neDnInn2.13设总体X服从几何分布:1()(1),1,2,,01kPxkppkp证明样本均值11niiXXn是()EX的相合,无偏和有效估计量。证明:(1)相合性1111()(1)(1)kkkkEXkpppkp令1111()(1)()(1)kkkkSpkpSpdpkpdp00(1)1(1)1(1)kkpppp11()()EXppp22222221()()()()2(1)3(1)(1)kDXEXEXEXpppppkpp22221(12(1)3(1)(1))kpppkp对上式括号中的式子,利用导数,21(1)((1)),kkkpkp并利用倍差法求和22221232312(1)3(1)(1)((1)2(1)3(1)(1))12()kkppkppppkppppp因此,2322222222()211()()()()ppEXpppppDXEXEXppp相合性:12122((,,))(,,)()nnDTXXXPTXXXg当12lim((,,,))0nnDTXXX则12(,,,)nTXXX是()g的相合估计。本题中,12211lim((,,,))lim0nnnpDTXXXnp11niiXXn是()EX的相合估计。(2)无偏性11111()()()()nniiiiEXEXEXEXnnp(3)有效性2211111()()()nniiiipDXDXDXnnnp11111121122212222ln(,)ln(1)ln(1)ln(1)ln(,)111ln(,)11(1)11111()()(1)(1)xPxppppxpPxpxpppPxpxpppxpIpEpppp21(1)pp242211(())111()()(1)nppepDXnIpnnpppX是()EX的有效估计。2.14设总体X服从泊松分布P,nXXX,,,21为其子样,试求参数2的无偏估计量的克拉美劳不等式下界。解:321224132212212212111111141,ln241,ln,ln221,ln,lnlnln,ln!,1XpeIIXXpXpXXpXpXXXpXeXpX克拉美劳不等式的下界为:23332'444