人的大脑和肢体一样,多用则灵,不用则废-茅以升L3L4L5ABCDEFL1L2定理的符号语言L3//L4//L5=ABDEBCEF(平行线分线段成比例定理)三条平行线截两条直线,所得的对应线段的比相等.DEFABCL3L4L5L1L2L3L4L5ABCDEFL1L2L3L4L5L1L2L3L4L5L1L2L3L4L5L1L2L3L4L5L1L2L3L4L5L1L2L3L4L5L1L2L1L2L3L4L5L1L2L3L4L5L1L2L3L4L5ABCEDABCDE∵DE∥BCADAEACAB=∵∵DE∥BCADAEACAB=∵数学符号语言数学符号语言平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等ABCDE————练习一:1、判断题:如图:DE∥BC,下列各式是否正确D:————=ADAEABAC()C:————=ADACAEAB()B:————=ADBDAECE()A:ADAB=AEAC()ABCED2、填空题:如图:DE∥BC,已知:2=——AEAC—5=——ADAB求:——2—5练习二:BDCEECBCDC————=ABCDE(A组)(B组)1、如图:已知DE∥BC,AB=14,AC=18,AE=10,求:AD的长。2、如图:已知AB⊥BD,ED⊥BD,垂足分别为B、D。求证:AC已知:如图,AB∥EF∥CD,CDABEFO3图中共有____对相似三角形。△EOF∽△CODAB∥EF△AOB∽△FOEAB∥CDEF∥CD△AOB∽△DOC如图,△ABC中,DE∥BC,GF∥AB,DE、GF交于点O,则图中与△ABC相似的三角形共有多少个?请你写出来.解:与△ABC相似的三角形有3个:△ADE△GFC△GOEABCDEFGO如图在平行四边形ABCD中,E为AD上一点,连结CE并延长交BA的延长线于点F,请找出相似的三角形并表示出来。FEDCBA如图,在△ABC中,DG∥EH∥FI∥BC,(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG:BC=_____。ABCDEFGHI△ADG∽△AEH∽△AFI∽△ABC1:4定理1:两角对应相等,两三角形相似。定理3:三组边的比相等,两三角形相似。∠A=∠A'∠B=∠B'△ABC∽△A'B'C'A'C'CAC'B'BCB'A'AB△ABC∽△A'B'C'定理2:两组边的比相等且夹角相等,两三角形相似。△ABC∽△A'B'C'''''ABABBCBC∠B=∠B'A'C'B'ABC一、相似三角形的判定定理:题3.如图,AB∥CD,AO=OB,DF=FB,DF交AC于E,求证:ED2=EO·EC.分析:欲证ED2=EO·EC即证:只需证DE、EO、EC所在的三角形相似。EDEC=EOEDAFBOCDE题1.如图,AB∥CD,AO=OB,DF=FB,DF交AC于E,求证:ED2=EO·EC.分析:欲证ED2=EO·EC即证:只需证DE、EO、EC所在的三角形相似。EDEC=EOED证明:∵AB∥CD∴∠C=∠A∵AO=OB,DF=FB∴∠A=∠B,∠B=∠FDB∴∠C=∠FDB又∠DEO=∠DEC∴△EDC∽△EOD2EDEC∴=EOED即ED=EOECAFBOCDE题2.已知在△ABC中,∠BAC=900,AD⊥BC,E是AC的中点,ED交AB的延长线于F.求证:AB:AC=DF:AF.ACEDFB分析:ACEDFB证证证ABBD分析:∵△ABC:△ABD∴=ACADABDFBDDF要=即=ACAFADAF需△BDF:△DAFACEDFB∵∠BAC=90°AD⊥BC∴∠ABC+∠C=90°∠ABC+∠BAD=90°∴∠BAD=∠C∵∠ADC=90°E是AC的中点,∴ED=EC∴∠EDC=∠C证明:ACEDFB∵∠EDC=∠BDF∴∠BDF=∠C=∠BAD又∠F=∠F∴△BDF∽△DAF.从0BDDF∴=又∠BAC=90AD⊥BCADAF,∴△ABC△ABDABBDABDF∴=而=ACADACAF题3.过平行四边形ABCD的一个顶点A作一直线分别交对角线BD,边BC,边DC的延长线于E、F、G.求证:EA2=EF·EG.CBADGFECBADGFE分析:要证明EA2=EF·EG,即证明成立,而EA,EG,EF三条线段在同一直线上,无法构成两个三角形,此时应采用换线段,换比例的方法。可证明:△AED∽△FEB,△AEB∽△GED.EAEF=EGEA证明:∵AD∥BFAB∥DC∴△AED∽△FEB△AEB∽△GEDCBADGFEEAABBEABAB∴=及==EGDGEDDGDGEAEF∴=EGEA