学习必备欢迎下载平行四边形平行四边形是一类特殊的四边形,它的特殊性体现在边、角、对角线上,矩形、菱形是特殊的平行四边形,矩形的特殊性体现在有一个角是直角,菱形的特殊性体现在邻边相等,所以,它们既有平行四边形的性质,又有各自特殊的性质.对角线是解决四边形问题的常用线段,对角线本身的特征又可以决定四边形的形状、大小,连对角线后,平行四边形就产生特殊三角形,因此解平行四边形相关问题时,既用到全等三角形法,特殊三角形性质,又要善于在乎行四边形的背景下探索问题,利用平行四边形丰富的性质为解题服务.熟悉以下基本图形、基本结论:例题讲解:例1、(1)如图,在平行四边形ABCD中E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N,对于下列结论:①△ABM≌△CDN;②AM=13AC;③DN=2NF;④S△AMB=12S△ABC.12AMBABCSS其中正确的结论有(2)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为例2、已知四边形ABCD,从下列条件中,①AB∥CD;②BC∥AD;③AB=CD;④BC=AD;⑤∠A=∠C;⑥∠B=∠D.任取其中两个,可以得出“四边形ABCD一定是平行四边形”这一结论的情况有()种A.4B.9C.13D.15学习必备欢迎下载例3、如图,四边形ABCD的对角线AC,BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.求证:四边形ABCD是平行四边形.例4、如图,四边形ABCD为平行四边形,AD=a,BE//AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.例5在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.学习必备欢迎下载例6、如图,△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P,求∠BPM的度数.过手训练:1、如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC于点E,则EC=______.2、如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为3、如图所示,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,∠NDC=∠MDA,则平行四边形ABCD的周长为4、已知一个四边形ABCD的边长分别为a,b,c,d,其中a,c为对边,且222222abcdabcd则此四边形是学习必备欢迎下载5、如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边三角形△ABE、△ADF,延长CB交AE于点G(点G在点A、E之间),连接CE、CF、EF,则以下四个结论中,正确的个数是()①△CDF≌△EBC;②∠CDF=∠EAF;③△CEF是等边三角形;④CG⊥AE.A.1个B.2个C.3个D.4个6、在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形4242ABCD的面积为1,则□ABCD的面积为()A.2B.35C.537、如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.已知:在四边形ABCD中,______,______;求证:四边形ABCD是平行四边形学习必备欢迎下载8、平行四边形ABCD,以AC为边在其两侧各作一个正三角形ACP和正三角形ACQ.求证:四边形BPDQ是平行四边形课后习题:1、如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①∠OBE=12∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正确的是()A.①②③B.②③④C.①③④D.①②④2、如图,在平行四边形ABCD中,BC=2AB,CE⊥AB,E为垂足,F为AD的中点,若∠AEF=54°,求B的度数。3、给出下列命题:(1)一组对边和一组对角分别相等的四边形是平行四边形;(2)两组对角的内角平分线分别平行的四边形是平行四边形(3)一组对边中点间的距离等于另一组对边长和的一半的四边形是平行四边形(4)两条对角线都平分四边形的面积的四边形是平行四边形.其中,真命题有()A1个B2个C3个D4个学习必备欢迎下载4、如图,已知四边形ABCD中,AC与BD教育点O,AC=BD,60DOC,求证:AB+CD〉AC5、在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明