石油大学2012-2013学年第二学期《现代制造技术》考查姓名班级学号高速主轴单元(电主轴)的工作原理及国内外的发展状况摘要:本文介绍了有关高速电主轴的工作原理和基本结构,以及高速电主轴的关键技术,综述其应用及国内外发展状况。关键词:主轴;润滑;轴承;机床;发展状况1、概述高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。高速电主轴是高速机床的核心部件,它将机床主轴与电机轴合二为一,即将主轴电机的定子、转子直接装入主轴组件的内部,也被称为内装式电主轴,其间不再使用皮带或齿轮传动副,从而实现机床主轴系统的“零传动”。具有结构紧凑、重量轻、惯性小、动态特性好等优点,并改善了机床的动平衡,避免振动和噪声,在超高速机床中得到了广泛的应用。随着高速加工技术的迅猛发展和广泛应用,各工业部门特别是航天、航空、汽车、摩托车和模具加工等行业,对高速度、高精度数控机床的需求与日俱增。这迫切需要开发出更加优质的高速电主轴。高速电主轴是一套组件,它包括电主轴及其一些附件:电主轴、高速变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置,因此它融合了高速轴承技术、冷却技术、润滑等技术。高速轴承技术是高速电主轴技术中很关键的技术。2、电主轴的工作原理、典型结构及优点2.1电主轴的工作原理电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。2.2电主轴的典型结构电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间(如图所示),其优点是主轴单元的轴向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高。电主轴的结构示意图1电源接口2电动机反馈3后轴承4无外壳主轴电动机5主轴6主轴箱体7前轴承2.3电主轴的优点电主轴省去了带轮或齿轮传动,实现了机床的“零传动”,提高了传动效率。电主轴的刚性好、回转精度高、快速响应性好,能够实现极高的转速和加、减速度及定角度的快速准停(C轴控制),调速范围宽。3、电主轴的关键技术“电主轴”的概念不应简单理解为只是一根主轴套筒,而应该是一套组件,包括:定子、转子、轴承、高速变频装置、润滑装置、冷却装置等。因此电主轴是高速轴承技术、润滑技术、冷却技术、动平衡技术、精密制造与装配技术以及电机高速驱动等技术的综合运用。3.1电主轴的高速轴承技术实现电主轴高速化精密化的关键是高速精密轴承的应用。目前在高速精密电主轴中应用的轴承有精密滚动轴承、液体动静压轴承、气体静压轴承和磁悬浮轴承等,但主要是精密角接触陶瓷球轴承和精密圆柱滚子轴承。液体动静压轴承的标准化程度不高;气体静压轴承不适合于大功率场合;磁悬浮轴承由于控制系统复杂,价格昂贵,其实用性受到限制。角接触球轴承不但可同时承受径向和轴向载荷,而且刚度高、高速性能好、结构简单紧凑、品种规格繁多、便于维修更换,因而在电主轴中得到广泛的应用。目前随着陶瓷轴承技术的发展,应用最多的电主轴轴承是混合陶瓷球轴承,即滚动体使用Si3N4陶瓷球,采用“小珠密珠”结构,轴承套圈为GCr15钢圈。这种混合轴承通过减小离心力和陀螺力矩,来减小滚珠与沟道间的摩擦,从而获得较低的温升及较好的高速性能。陶瓷球混合轴承与钢球轴承相比,优点如下:(1)陶瓷与钢组成的陶瓷球轴承摩擦性能非常好,能降低材料与润滑剂的应力。(2)因陶瓷密度低,可降低运转时的离心力。(3)陶瓷较低的热膨胀系数有效降低了轴承预加负荷的变化。(4)陶瓷的弹性模量较高,可以提高轴承的刚性。上述因素大幅度地延长了轴承的寿命和提升了轴承的运转极限速度。3.2电主轴的润滑技术高速电主轴必须采用合理的、可控制的轴承润滑方式来控制轴承的温升,以保证数控机床工艺系统的精度和稳定性。采用滚动轴承的电主轴的润滑方式目前主要有脂润滑、油雾润滑和油气润滑等方式。脂润滑在转速相对较低的电主轴中是较常见的润滑方式。脂润滑型电主轴的润滑系统简单、使用方便、无污染、通用性强。油雾润滑具有润滑和冷却双重作用,它以压缩空气为动力,通过油雾器将油液雾化并混入空气流中,然后把其输送到需要润滑的位置。油雾润滑所需设备简单,维修方便,价格比较便宜,是一种普遍使用的高速电主轴润滑方式。但它有污染环境,油耗比较高等缺点。随着人们对环保要求的提高,油雾润滑方式必将逐渐被淘汰。油气润滑技术是利用压缩空气将微量的润滑油分别连续不断地、精确地供给每一套主轴轴承,微小油滴在滚动和内、外滚道间形成弹性动压油膜,而压缩空气则可带走轴承运转所产生的部分热量。实践表明在润滑中供油量过多或过少都是有害的,而前两种润滑方式均无法准确地控制供油量多少,不利于主轴轴承转速和寿命的提高。而新近发展起来的油气润滑方式则可以精确地控制各个摩擦点的润滑油量,可靠性极高。实践证明,油气润滑是高速大功率电主轴轴承的最理想润滑方法,但其所需设备复杂,成本高。由于油气润滑方式润滑效果理想,目前已成为国际上最流行的润滑方式。3.3电主轴的热源分析及其冷却电主轴有两个主要的内部热源:内置电动机的发热和主轴轴承的发热。如果不加以控制,由此引起的热变形会严重降低机床的加工精度和轴承使用寿命,从而导致电主轴的使用寿命缩短。电主轴由于采用内藏式主轴结构形式,位于主轴单元体中的电机不能采用风扇散热,因此自然散热条件较差。电机在实现能量转换过程中,内部产生功率损耗,从而使电机发热。研究表明,在电机高速运转条件下,有近1/3的电机发热量由电机转子产生,并且转子产生的绝大部分热量都通过转子与定子间的气隙传入定子中;其余2/3的热量产生于电机的定子。所以,对电机产生发热的主要解决方法是对电机定子采用冷却液的循环流动来实行强制冷却。典型的冷却系统是用外循环水式冷却装置来冷却电机定子,将电机的热量带走。角接触球轴承的发热主要是滚子与滚道之间的滚动摩擦、高速下所受陀螺力矩产生的滑动摩擦以及润滑油的粘性摩擦等产生的。减小轴承发热量的主要措施:(1)适当减小滚珠的直径减小滚珠直径可以减小离心力和陀螺力矩,从而减小摩擦,减少发热量。(2)采用新材料比如采用陶瓷材料做滚珠,陶瓷球轴承与钢质角接触球轴承相比,在高速回转时,滚珠与滚道间的滚动和滑动摩擦减小,发热量降低。(3)采用合理的润滑方式油气和油雾等润滑方式对轴承不但具有润滑作用,还具有一定的冷却作用。3.4电主轴的设计和装配电主轴要获得好的性能和使用寿命,必须对电主轴各个部分进行精心设计和制造。电主轴的定子由具有高导磁率的优质矽钢片迭压而成,定子内腔带有冲制嵌线槽。转子由转子铁芯、鼠笼和转轴三部分组成。主轴箱的尺寸精度和位置精度也将直接影响主轴的综合精度。通常将轴承座孔直接设计在主轴箱上,为加装电机定子,必须至少开放一端。主轴高速旋转时,任何小的不平衡质量即可引起电主轴大的高频振动。因此精密电主轴的动平衡精度要求达到G1~G0.4级。对于这种等级的动平衡,采用常规的方法即仅在装配前对主轴上的每个零件分别进行动平衡是远远不够的,还需在装配后进行整体的动平衡,甚至还要设计专门的自动平衡系统来实现主轴的在线动平衡。另外,在设计电主轴时,必须严格遵守结构对称原则,键联接和螺纹联接在电主轴上被禁止使用,而普遍采用过盈联接,并以此来实现转矩的传递。过盈联接与螺纹联接或键联接相比有:不会在主轴上产生弯曲和扭转应力,对主轴的旋转精度没有影响;主轴的动平衡易得到保证等优点。转子与转轴之间的过盈联接分为两类,一类是通过套筒实现的,此结构便于维修拆卸;另一类是没有套筒,转子直接过盈联接在转轴上,此类联接转子装配后不可拆卸。由于内孔与转轴配合面之间有很大的过盈量,所以转子与转轴可以采用转轴冷缩和转子热胀法装配。带有套筒的联接拆卸时,需向转子套筒上预留的油孔中高压注油,迫使转子的过盈套筒涨开,即可顺利拆卸下电机的转子。电机定子通过一个冷却套固定装在电主轴的箱体中。3.5电主轴的运动控制在数控机床中,电主轴通常采用变频调速方法。目前主要有普通变频驱动和控制、矢量控制驱动器的驱动和控制以及直接转矩控制三种控制方式。普通变频为标量驱动和控制,其驱动控制特性为恒转矩驱动,输出功率和转速成正比。普通变频控制的动态性能不够理想,在低速时控制性能不佳,输出功率不够稳定,也不具备C轴功能。但价格便宜、结构简单,一般用于磨床和普通的高速铣床等。矢量控制技术模仿直流电动机的控制,以转子磁场定向,用矢量变换的方法来实现驱动和控制,具有良好的动态性能。矢量控制驱动器在刚启动时具有很大的转矩值,加之电主轴本身结构简单,惯性很小,故启动加速度大,可以实现启动后瞬时达到允许极限速度。这种驱动器又有开环和闭环两种,后者可以实现位置和速度的反馈,不仅具有更好的动态性能,还可以实现C轴功能;而前者动态性能稍差,也不具备C轴功能,但价格较为便宜。直接转矩控制是继矢量控制技术之后发展起来的又一种新型的高性能交流调速技术,其控制思想新颖,系统结构简洁明了,更适合于高速电主轴的驱动,更能满足高速电主轴高转速、宽调速范围、高速瞬间准停的动态特性和静态特性的要求,已成为交流传动领域的一个热点技术。4、高速电主轴对装备制造业促进和发展4.1高速电主轴对数控机床的发展以及金属切削技术的影响对于数控机床模块化设计、简化机床结构、提高机床性能方面的作用:(1)简化结构,促进机床结构模块化电主轴可以根据用途、结构、性能参数等特征形成标准化、系列化产品,供主机选用,从而促进机床结构模块化。(2)降低机床成本,缩短机床研制周期一方面,标准化、系列化的电主轴产品易于形成专业化、规模化生产,实现功能部件的低成本制造;另一方面,采用电主轴后,机床结构的简单化和模块化,也有利于降低机床成本。此外,还可以缩短机床研制周期,适应目前快速多变的市场趋势。(3)改善机床性能,提高可靠性采用电主轴结构的数控机床,由于结构简化,传动、连接环节减少,因此提高了机床的可靠性;技术成熟、功能完善、性能优良、质量可靠的电主轴功能部件使机床的性能更加完善,可靠性得以进一步提高。(4)实现某些高档数控机床的特殊要求有些高档数控机床,如并联运动机床、五面体加工中心、小孔和超小孔加工机床等,必须采用电主轴,方能满足完善的功能要求。4.2促进了高速切削技术在机械加工领域的广泛应用电主轴系由内装式电机直接驱动,以满足高速切削对机床“高速度、高精度、高可靠性及小振动”的要求,与机床高速进给系统、高速刀具系统一起组成高速切削所需要的必备条件。电主轴技术与电机变频、闭环矢量控制、交流伺服控制等技术相结合,可以满足车削、铣削、镗削、钻削、磨削等金属切削加工的需要。采用高速加工技术可以解决机械产品制造中的诸多难题,取得特殊的加工精度和表面质量,因此这项技术在各类装备制造业中得到越来越广泛的应用,正在成为当今金切加工的主流技术。高精度、高转速数控机床主轴单元是承载高速切削技术的主体之一,是高精度、高效率高档数控机床的核心功能部件,是航空航天、汽车、船舶、精密模具、精密机械等尖端产品制造领域所需高档加工母机的核心部件。目前国内外电主轴技术的发展十分迅速,各生产厂商都在高可靠性、节能性、高精度、高加工效率、环保性、智能化等方面进行持续的科技攻关,以期形成自身的特色,占领电主轴技术发展的制高点。5、高速电主轴在国内外的发展状况5.1国外电主轴技术的发展趋势国外电主轴最早用于内圆磨床,上世纪80年代,随着数控机床和高速切削技术的发展和需要,逐渐将电主轴技术应用于加工中心、数控铣床等高档数控机床,成为近年来机床技术所取得的重大成就之一。随着机床技术、高速切削技术的发展和实际应用的需要,对机床电主轴的性能也提出了越来越高的要求,目前国外从事高速数控机床电主轴研发与生产的企业主要有如下几家:德国GMN、西门子、瑞士IBAG、美国Setco、意大利Omlet、Faemat、Gamfior、日本大隈等,其中尤以GMN、IBA