科技部公开“智能机器人”重点专项指南

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

“智能机器人”重点专项按照“围绕产业链,部署创新链”的要求,围绕智能机器人基础前沿技术、新一代机器人、关键共性技术、工业机器人、服务机器人、特种机器人六个方向部署实施。专项实施周期为5年(2017—2021年)。根据官网信息,2017年度,“智能机器人”重点专项按照基础前沿技术类、共性技术类、关键技术与装备类、示范应用类四个层次,发布42条指南。其中基础前沿技术类指南5条,主要涉及机器人新型机构设计、智能发育理论与技术,以及互助协作型、人体行为增强型等新一代机器人验证平台研究等。共性技术类指南8条,主要包括核心零部件、机器人专用传感器、机器人软件、测试/安全与可靠性等关键共性技术研发。关键技术与装备类指南17条,主要包括工业机器人、服务机器人、特殊环境服役机器人和医疗/康复机器人的关键技术与系统集成平台研发。示范应用类指南12条,面向工业机器人、医疗/康复机器人等领域的示范应用等。对于机器人企业来说,此次重点专项项目中有不少是支持企业申报,无疑不是一个利好消息。具体如下:1.基础前沿技术1.1机器人新型机构设计理论与技术研究内容:面向仿生飞行、仿生游动、仿生跳跃等仿生机器人前沿技术,研究机器人新型机构的设计理论与技术,实现与新型材料、新型驱动、新型传感器技术的高度融合,研究新结构、新机构的建模与控制技术,研制相应仿生机器人实验样机,实现验证。考核指标:研制仿生飞行、仿生游动、仿生跳跃等不少于3类仿生机器人实验样机,性能达到国际同类研究领先水平,取得2-3项原创性成果。1.2机器人智能发育理论、方法与验证研究内容:利用机器学习、人工智能与脑科学的研究成果,研究基于模仿学习、自主学习的机器人知识、技能获取与增长机制及实现方法;面向自主作业和自主移动,研究机器人智能发育的软硬件实现方法;研制机器人实验平台,实现技术验证与示范。考核指标:面向自主作业和自主移动,构建不少于2类智能机器人实验平台;实现基于发育的动态非结构化环境认知与行为优化决策,针对5种以上典型应用场景对技术成果实现实验验证。1.3生-机智能交互与生机电一体化机器人技术研究内容:研究神经信号的时频空高分辨率测量、解码与神经控制技术,脑电、肌电、视觉、触/力觉信息的融合方法,行为意图识别与理解、人机交互控制及生机电系统功能集成等技术;构建基于多模态传感信息的人机自然交互系统实验平台。考核指标:研制出神经信号高分辨率在体测量系统;神经控制接口实现20种以上离散模式实时解码与控制,单次解码时间不大于200ms,准确率不低于95%;实现在康复辅助机器人、协作型机器人及运动神经假体中的实验验证。1.4人机协作型移动作业机器人研究内容:研究一体化柔顺关节设计、高负重比轻型机械臂结构设计、基于关节力感知的机械臂柔顺控制等技术;研究高集成度多指灵巧手机构设计、触/力觉感知与多指协调控制等技术;研究全方位移动平台设计技术;研究基于视觉等传感器的环境感知、作业对象识别与定位、移动臂自标定、臂-手协调控制、反应式行为规划与控制等技术;研究人的行为意图理解与人机互助协作技术;研制高负重比轻型机械臂、多指灵巧手及移动平台集成系统,面向典型应用开展试验验证。考核指标:机械臂不少于7个自由度,重量不超过25kg,工作半径不小于900mm,负载能力不小于7kg,重复定位精度优于0.05mm;具备碰撞检测与预警、整臂动态避碰、力顺应及柔顺作业能力。灵巧手具备仿人5指结构、集成力/触觉传感器,每指主动自由度不少于2个。移动平台具备全方位移动、自主避碰能力,定位精度优于5mm。面向不少于2个应用领域开展试验验证。1.5助力型外骨骼机器人研究内容:研究助力外骨骼机器人的人机相容性设计、关节变刚度驱动、人体运动感知、人机耦合协同控制,以及高功率密度动力源、系统轻量化等关键技术,研制负重移动型外骨骼、以及作业增强型外骨骼机器人,面向典型需求开展试验验证。考核指标:负重移动型外骨骼机器人支持行走、站立、转体、下蹲、上下楼梯、上下斜坡等人体运动,可适应水泥、硬质泥土、砂砾等复杂地面,本体重量不大于30kg,最大承载能力不小于90kg,负重50kg状态下行走速度不低于4km/h,连续工作时间不小于6h。作业增强型外骨骼机器人本体重量不大于50kg,搬移托举能力不小于50kg,负重30kg状态下连续工作时间不小于3h。上述两种机器人平均助力效率不小于70%;面向不少于2个应用领域开展试验验证。2.共性技术2.1机器人系列化高精度谐波减速器产品性能优化研究内容:针对我国机器人产业对高精度、高可靠性、系列化谐波减速器需求,开展谐波传动啮合齿形设计、啮合过程动态仿真模拟与优化等关键技术研究,形成完善的谐波减速器设计体系;突破谐波减速器制造工艺技术,提高批量生产过程中产品的一致性和可靠性;研究检测工艺,完善产品质量检验手段;开展工程化开发和规模化推广应用。考核指标:开发出不少于15种高精度谐波减速器;在谐波减速器寿命周期内,背隙初始值小于10弧秒,双向传动精度优于2弧分,重复定位精度优于20弧秒,额定寿命超过10000小时,满负荷条件下噪声小于60分贝,效率大于70%;批量化生产产品合格率优于97%;实现5万台/年的生产能力,项目执行期内累计销售谐波减速器10万台以上。有关说明:由企业牵头申报。2.2机器人系列化高精度RV减速器产品性能优化研究内容:针对高精度、高可靠性、系列化RV减速器设计、制造和检测需求,开展传动齿形啮合三维动态仿真模拟与优化等关键技术研究,形成RV减速器优化设计技术体系;突破批量制造工艺技术,提高批量生产过程中产品的一致性和可靠性;研究检测工艺,完善产品质量检验手段;开展工程化开发和规模化推广应用。考核指标:研制覆盖负载6-500kg工业机器人所需系列化RV减速机;在RV减速器寿命周期内,齿隙精度优于0.5弧分,传动精度优于1弧分,额定载荷条件下效率高于85%,额定寿命不小于8000小时,满负荷条件下噪声不大于70分贝;批量化生产产品合格率优于97%;实现5万台/年的生产能力,项目执行期内累计销售RV减速机产品5万台以上。有关说明:由企业牵头申报。2.3工业机器人伺服电机与驱动产品性能优化研究内容:针对我国机器人产业对专用伺服电机和驱动器的需求,开展网络化、模块化、智能化、安全、高效节能等关键技术研究,研制高可靠性、高性能的伺服电机和驱动器产品;提高批量生产过程中产品的一致性和可靠性;研究检测工艺,完善产品质量检验手段;开展工程化开发和规模化推广应用。考核指标:研制覆盖负载6-500kg工业机器人所需系列化工业机器人伺服电机与驱动产品,支持两种以上高速工业现场总线接口,具备惯量自动识别和控制参数自整定等功能;平均无故障时间不小于30000小时;项目执行期内累计实现在工业机器人上示范应用5万台以上。有关说明:由企业牵头申报。2.4工业机器人控制器产品性能优化研究内容:基于嵌入式实时多任务操作系统,支持两种以上硬件架构,开发支持智能控制算法、外部传感器接入以及结合工艺定制化的二次开发接口,研制工业机器人网络化、高安全性、高实时性、高可靠性、高适应性的控制器产品;提高批量生产过程中产品的一致性和可靠性;研究检测工艺,完善产品质量检验手段;开展工程化开发和规模化推广应用。考核指标:具备2种以上高速总线接口,可实现机器人视觉、力等外部传感器的接入;具备开放式二次开发环境;安全性符合国家或行业相关标准;平均无故障时间不小于10000小时;具有5种以上工艺软件包;项目执行期内累计实现工业机器人上示范应用5000台套以上。有关说明:由企业牵头申报。2.5机器人操作系统研究内容:研究支持多核与网络化分布处理的实时任务分割与通信技术、实时数据分发与交互技术;研究对多种主流硬件体系结构和智能硬件加速芯片的支持技术;研究设备即插即用式动态配置技术、机器人功能组件标准化技术、机器人应用框架描述技术;开发兼具实时性、多任务和交互性的机器人操作系统。考核指标:提供机器人作业与移动8类以上常用功能模块库,支持不少于2种的主流硬件架构,支持2种以上现有主流操作系统的运行环境和应用框架,支持10种以上机器人驱动器及传感器,实现微秒级中断任务调度延时和任务切换时间,提供一套可视化调试测试平台,在5家以上机器人企业、6类以上机器人产品进行应用验证。有关说明:由企业牵头申报。2.6面向工业机器人生产线的工艺规划仿真与离线编程软件研究内容:研究工业机器人和周边设备作业环境三维建模与可视化、运动仿真、轨迹生成、碰撞检测、虚拟交互、程序载入等技术;研究生产制造流程和工艺规划的效率分析、故障检测与优化技术;面向行业自动化生产线研制需求,研发工业机器人生产线的工艺规划仿真与离线编程软件。考核指标:开发面向工业机器人生产线的工艺规划仿真与离线编程软件,提供不少于3种典型工艺应用软件包;建立机器人及智能设备单元虚拟仿真模型数据库,涵盖不少于3家国产工业机器人主机龙头企业系列产品;生产线中可运动执行部件工作轨迹、可达性、干涉性模拟达100%;在不少于3种工业机器人生产线研制中进行应用验证。有关说明:由企业牵头申报。2.7工业机器人可靠性质量保障技术研究内容:研究工业机器人可靠性工作基本规范、可靠性影响因素与特性;研究工业机器人高可靠性设计方法、可靠性评估建模方法、指标预测与分配技术;研究核心部件与整机的可靠性测试、破坏性测试和加速测试方法;完成相关实验验证,形成工业机器人可靠性质量保障技术体系。考核指标:建立机器人可靠性质量保障技术体系,应用于3家以上国产工业机器人重点主机厂产品,使国产工业机器人平均无故障工作时间达到80000小时。2.8工业机器人整机性能测试与评估平台研究内容:研究工业机器人整机性能所需参数及其测量方法,研究温湿度、震动、电磁等环境方面对于机器人整机性能的影响,研究伺服电机、减速器等核心部件静动态特性、性能退化评估方法与测试技术,研究由控制器、伺服电机和关节减速器组成的机器人驱动系统的机电耦合动力学特性、系统性能运行品质的仿真模型和评估方法,研究基于多基站激光跟踪仪联动的机器人精度测量技术,建立工业机器人整机性能评估模型,形成机器人性能测试与评价的技术规范,研制机器人整机性能测试与评估系统。考核指标:形成机器人测试分析与评估的软件与技术规范、机器人定位精度测试分析规范、机器人联动性能评价方法及其测量技术规范,构建机器人整机性能综合测试与评估系统,完成不少于10种国产主流品牌工业机器人的综合测试与评估;形成相关国家标准草案。3.关键技术与装备3.1大型复杂曲面叶片智能磨抛作业机器人技术与系统研究内容:研究大型复杂曲面叶片定位与型面检测、力控磨抛、视觉检测技术及效率提升等机器人磨抛工艺技术;研究多机器人协同作业碰撞与干涉规避技术、多机器人磨抛系统集成技术;研制大型叶片多机器人智能磨抛作业系统,在风电等行业开展应用验证。考核指标:多机器人协同打磨,叶片一次装夹打磨区域不小于90%,打磨后粗糙度优于Ra3.2,叶片型面过渡平滑,无氧化烧伤,磨抛面与要求型面的尺寸偏差不大于+/-0.05mm,机器人磨抛速度:不少于人工磨抛速度的1.5倍。打磨质量符合叶片质量检测行业标准。有关说明:由企业牵头申报。3.2大型复杂结构机器人智能激光焊接技术及系统研究内容:研究大型复杂结构焊缝位置识别和焊缝特征尺寸提取、激光自动化焊接工艺和焊接质量稳定性控制、焊接路径规划与编程等技术;研制大型复杂结构的机器人智能激光焊接技术及系统,形成工艺规范、工艺数据库;焊缝质量符合行业标准。在航空、航天等典型行业实现应用验证。考核指标:实现全位置焊缝的激光自动识别、寻位、聚焦及焊接;机器人重复定位精度优于±0.05mm;焊缝轨迹跟踪精度优于±0.10mm;焊接加工速度不小于10m/min。有关说明:由企业牵头申报。3.3面向飞机装配的机器人智能钻铆技术与系统研究内容:针对飞机部件装配中对于异形曲面钻铆精度的需求,研究钻铆工艺规划、精确定位、作业状态实时监测及精确控制、精度实时补偿、质量评估等关键技术;开展智能钻铆单元设计,研制多功能末端执行器;研制面向飞机复杂构件装配的

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功