7.1系统函数与系统特性一、系统函数的零、极点分布图LTI系统的系统函数是复变量s或z的有理分式,即A(.)=0的根p1,p2,…,pn称为系统函数H(.)的极点;B(.)=0的根1,2,…,m称为系统函数H(.)的零点。)()()(ABH将零极点画在复平面上得零、极点分布图。例)1()1()2(2)(22ssssHσjω0(2)-1-2j-j例:已知H(s)的零、极点分布图如示,并且h(0+)=2。求H(s)的表达式。σjω0-1j2-j2解:由分布图可得524)1()(22ssKssKssH根据初值定理,有KssKsssHhss52lim)(lim)0(22522)(2ssssH二、系统函数H(·)与时域响应h(·)冲激响应或单位序列响应的函数形式由H(.)的极点确定。下面讨论H(.)极点的位置与其时域响应的函数形式。所讨论系统均为因果系统。1.连续因果系统H(s)按其极点在s平面上的位置可分为:在左半开平面、虚轴和右半开平面三类。(1)在左半平面(a)若系统函数有负实单极点p=–α(α0),则A(s)中有因子(s+α),其所对应的响应函数为Ke-αtε(t)(b)若有一对共轭复极点p12=-α±jβ,则A(s)中有因子[(s+α)2+β2]---Ke-αtcos(βt+θ)ε(t)(c)若有r重极点,则A(s)中有因子(s+α)r或[(s+α)2+β2]r,其响应为Kitie-αtε(t)或Kitie-αtcos(βt+θ)ε(t)(i=0,1,2,…,r-1)以上三种情况:当t→∞时,响应均趋于0。暂态分量。(2)在虚轴上(a)单极点p=0或p12=±jβ,则响应为Kε(t)或Kcos(βt+θ)ε(t)-----稳态分量(b)r重极点,相应A(s)中有sr或(s2+β2)r,其响应函数为Kitiε(t)或Kiticos(βt+θ)ε(t)(i=0,1,2,…,r-1)—递增函数(3)在右半开平面:均为递增函数。综合结论:LTI连续因果系统的h(t)的函数形式由H(s)的极点确定。①H(s)在左半平面的极点所对应的响应函数为衰减的。即当t→∞时,响应均趋于0。②H(s)在虚轴上的一阶极点所对应的响应函数为稳态分量。③H(s)在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的。即当t→∞时,响应均趋于∞。2.离散因果系统H(z)按其极点在z平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类。根据z与s的对应关系,有结论:①H(z)在单位圆内的极点所对应的响应序列为衰减的。即当k→∞时,响应均趋于0。②H(z)在单位圆上的一阶极点所对应的响应函数为稳态响应。③H(z)在单位圆上的高阶极点或单位圆外的极点,其所对应的响应序列都是递增的。即当k→∞时,响应均趋于∞。三、系统函数收敛域与其极点之间的关系根据收敛域的定义,H(·)收敛域不能含H(·)的极点。例:某离散系统的系统函数35.0)(zzzzzH(1)若系统为因果系统,求单位序列响应h(k);(2)若系统为反因果系统,求单位序列响应h(k);(3)若系统存在频率响应,求单位序列响应h(k);解(1)|z|3,h(k)=[(-0.5)k+(3)k](k)(2)|z|0.5,h(k)=[-(-0.5)k-(3)k](-k-1)(3)0.5|z|3,h(k)=(-0.5)k(k)-(3)k(-k-1)7.2系统的稳定性一、因果系统因果系统是指,系统的零状态响应yf(.)不会出现于f(.)之前的系统。连续因果系统的充分必要条件是:冲激响应h(t)=0,t0或者,系统函数H(s)的收敛域为:Re[s]σ0离散因果系统的充分必要条件是:单位响应h(k)=0,k0或者,系统函数H(z)的收敛域为:|z|ρ0二、系统的稳定性1、稳定系统的定义一个系统,若对任意的有界输入,其零状态响应也是有界的,则称该系统是有界输入有界输出(BIBO)稳定的系统,简称为稳定系统。即,若系统对所有的激励|f(.)|≤Mf,其零状态响应|yf(.)|≤My,则称该系统稳定。(1)连续系统稳定的充分必要条件是Mdtth|)(|若H(s)的收敛域包含虚轴,则该系统必是稳定系统。(2)离散系统稳定的充分必要条件是若H(z)的收敛域包含单位圆,则该系统必是稳定的系统。kMkh|)(|例1y(k)+1.5y(k-1)-y(k-2)=f(k-1)(1)若为因果系统,求h(k),并判断是否稳定。(2)若为稳定系统,求h(k).解24.05.04.0)2)(5.0(15.15.11)(2211zzzzzzzzzzzzzzH(1)为因果系统,故收敛域为|z|2,所以h(k)=0.4[0.5k-(-2)k]ε(k),不稳定。(2)若为稳定系统,故收敛域为0.5|z|2,所以h(k)=0.4(0.5)kε(k)+0.4(-2)kε(-k-1)因果系统稳定性的充分必要条件可简化为(3)连续因果系统0|)(|Mdtth因为因果系统左半开平面的极点对应的响应为衰减函数。故,若H(s)的极点均在左半开平面,则该系统必是稳定的因果系统。(4)离散因果系统因为因果系统单位圆内的极点对应的响应为衰减函数。故,若H(z)的极点均在单位圆内,则该系统必是稳定的因果系统。0|)(|kMkh例1:如图反馈因果系统,问当K满足什么条件时,系统是稳定的?其中子系统的系统函数G(s)=1/[(s+1)(s+2)]解:设加法器的输出信号X(s)∑G(s)KF(s)Y(s)X(s)X(s)=KY(s)+F(s)Y(s)=G(s)X(s)=KG(s)Y(s)+G(s)F(s)H(s)=Y(s)/F(s)=G(s)/[1-KG(s)]=1/(s2+3s+2-k)H(s)的极点为kp2232322,1为使极点在左半平面,必须(3/2)2-2+k(3/2)2,k2,即当k2,系统稳定。例2:如图离散因果系统框图,为使系统稳定,求常量a的取值范围解:设加法器输出信号X(z)1z∑∑2aF(z)Y(z)X(z)z-1X(z)X(z)=F(z)+z-1aX(z)Y(z)=(2+z-1)X(z)=(2+z-1)/(1-az-1)F(z)H(z)=(2+z-1)/(1-az-1)=(2z+1)/(z-a)为使系统稳定,H(z)的极点必须在单位圆内,故|a|1三、连续因果系统稳定性判断准则——罗斯-霍尔维兹准则对因果系统,只要判断H(s)的极点,即A(s)=0的根(称为系统特征根)是否都在左半平面上,即可判定系统是否稳定,不必知道极点的确切值。所有的根均在左半平面的多项式称为霍尔维兹多项式。1、必要条件—简单方法一实系数多项式A(s)=ansn+…+a0=0的所有根位于左半开平面的必要条件是:(1)所有系数都必须非0,即不缺项;(2)系数的符号相同。例1A(s)=s3+4s2-3s+2符号相异,不稳定例2A(s)=3s3+s2+2,a1=0,不稳定例3A(s)=3s3+s2+2s+8需进一步判断,非充分条件。2、罗斯列表将多项式A(s)的系数排列为如下阵列—罗斯阵列第1行anan-2an-4…第2行an-1an-3an-5…第3行cn-1cn-3cn-5…它由第1,2行,按下列规则计算得到:312111nnnnnnaaaaac514131nnnnnnaaaaac…第4行由2,3行同样方法得到。一直排到第n+1行。罗斯准则指出:若第一列元素具有相同的符号,则A(s)=0所有的根均在左半开平面。若第一列元素出现符号改变,则符号改变的总次数就是右半平面根的个数。特例:对于二阶系统A(s)=a2s2+a1s+a0,若a20,不难得出,A(s)为霍尔维兹多项式的条件为:a10,a00例1A(s)=2s4+s3+12s2+8s+2罗斯阵列:2122180418112228.502第1列元素符号改变2次,因此,有2个根位于右半平面。注意:在排罗斯阵列时,可能遇到一些特殊情况,如第一列的某个元素为0或某一行元素全为0,这时可断言:该多项式不是霍尔维兹多项式。例2已知某因果系统函数kssssH1331)(23为使系统稳定,k应满足什么条件?解列罗斯阵列1331+k(8-k)/31+k所以,–1k8,系统稳定。7.2系统的稳定性四、离散因果系统稳定性判断准则——朱里准则为判断离散因果系统的稳定性,要判断A(z)=0的所有根的绝对值是否都小于1。朱里提出一种列表的检验方法,称为朱里准则。朱里列表:第1行anan-1an-2……a2a1a0第2行a0a1a2……an-2an-1an第3行cn-1cn-2cn-3……c1c0第4行c0c1c2……cn-2cn-1第5行dn-2dn-3dn-4……d0第6行d0d1d2……dn-2……第2n-3行r2r1r07.2系统的稳定性第3行按下列规则计算:nnnaaaac0011012nnnaaaac2023nnnaaaac…一直到第2n-3行,该行有3个元素。朱里准则指出,A(z)=0的所有根都在单位圆内的充分必要的条件是:(1)A(1)0(2)(-1)nA(-1)0(3)an|a0|cn-1|c0|dn-2|d0|……r2|r0|奇数行,其第1个元素必大于最后一个元素的绝对值。特例:对二阶系统。A(z)=a2z2+a1z+a0,易得A(1)0A(-1)0a2|a0|7.2系统的稳定性例A(z)=4z4-4z3+2z-1解4-402-1-120-4415-140440-1415209-2105641,154,20956所以系统稳定。(-1)4A(-1)=50排朱里列表A(1)=107.3信号流图7.3信号流图用方框图描述系统的功能比较直观。信号流图是用有向的线图描述方程变量之间因果关系的一种图,用它描述系统比方框图更加简便。信号流图首先由Mason于1953年提出的,应用非常广泛。信号流图就是用一些点和有向线段来描述系统,与框图本质是一样的,但简便多了。一、信号流图1、定义:信号流图是由结点和有向线段组成的几何图形。它可以简化系统的表示,并便于计算系统函数。2、信号流图中常用术语7.3信号流图(1)结点:信号流图中的每个结点表示一个变量或信号。(2)支路和支路增益:连接两个结点之间的有向线段称为支路。每条支路上的权值(支路增益)就是该两结点间的系统函数(转移函数)F(s)H(s)Y(s)即用一条有向线段表示一个子系统。(3)源点与汇点,混合结点:仅有出支路的结点称为源点(或输入结点)。仅有入支路的结点称为汇点(或输出结点)。有入有出的结点为混合结点7.3信号流图沿箭头指向从一个结点到其他结点的路径称为通路。如果通路与任一结点相遇不多于一次,则称为开通路。若通路的终点就是通路的起点(与其余结点相遇不多于一次),则称为闭通路。相互没有公共结点的回路,称为不接触回路。只有一个结点和一条支路的回路称为自回路。(5)前向通路:从源点到汇点的开通路称为前向通路。(6)前向通路增益,回路增益:前向通路中各支路增益的乘积称为前向通路增益。回路中各支路增益的乘积称为回路增益。(4)通路、开通路、闭通路(回路、环)、不接触回路、自回路:7.3信号流图3、信号流图的基本性质(1)信号只能沿支路箭头方向传输。支路的输出=该支路的输入与支路增益的乘积。(2)当结点有多个输入时,该接点将所有输入支路的信号相加,并将和信号传输给所有与该结点相连的输出支路。x1x2x3x4x5x6abcde如:x4=ax1+bx2+dx5x3=cx4x6=ex4(3)混合结点可通过增加一个增益为1的出支路而变为汇点。7.3信号流图4、方框图流图注意:加法器前引入增益为1的支路5、流图简化的基本规则:(1)支路串联:支路增益相乘。X1X3X2H1H2X2=H2X3=H2H1X