Proceedingsofthe35thChineseControlConferenceJuly27-29,2016,Chengdu,ChinaBraiftMRISegmefttatioftwithPatch-basedCNNApproachAbstract:ZhipengCUI,JieYANG,YuQIAO*InstituteofImageProcessingandPatternRecognition,ShanghaiJiaoTongUniversityTheKeyLaboratoryofMinistryofEducationforSystemControlandInformationProcessing,ChinaBrainMagneticResonanceImage(MRI)playsanon-substitutiveroleinclinicaldiagnosis.Thesymptomofmanydiseasescorrespondstothestructuralvariantsofbrain.AutomaticstructuresegmentationinbrainMRIisofgreatimportanceinmodernmedicalresearch.SomemethodsweredevelopedforautomaticsegmentingofbrainMRIbutfailedtoachievedesiredaccuracy.Inthispaper,weproposedanewpatch-basedapproachforautomaticsegmentationofbrainMRIusingconvolutionalneuralnetwork(CNN).EachbrainMRIacquiredfromasmallportionofpublicdatasetisfirstlydividedintopatches.AllofthesepatchesarethenusedfortrainingCNN,whichisusedforautomaticsegmentationofbrainMRI.Experimentalresultsshowedthatourapproachachievedbettersegmentationaccuracycomparedwithotherdeeplearningmethods.KeyWords:CNN,DeepLearning,BrainMRISegmentation,Patch-based1IntroductionThesegmentationofbrainMRIhasbeenahotareaofcomputervisionforseveralyears.SegmentationservesasanimportantstepforquantitativeanalysisinbrainMRIsandfortheresearchofbraindisorders.Indeed,structuralvariationinthebrainmaycausesomebraindisorders.Quantificationofstructuralvariationbymeasuringvolumesofregionofinterest,canbeusedtoevaluateseverityofsomediseaseorevolutioninbrain[1].OnlywhenthelabelingisprocessedonMRI,thesemeasurementscanbeperformed.SegmentationofMRIplaysanincreasinglyimportantroleinmedicalimageprocessingandanalysisasdigitalmedicalimagedeveloping.Thousandsofsegmentationmethodsweredeveloped,whicharemainlyedge-basedandcontour-based[2].However,withthesemethods,itisaveryhardtaskforsegmentingcomplexstructureofmedicalimagewithhighaccuracyrate[3].Deeplearningisatypeofmachinelearningapproaches,whicharisefromartificialneuralnetwork.DavidRumelhart,GeoffreyHintonandotherindividualsappliedbackpropagationalgorithmtoartificialneuralnetwork,whichstartedmachinelearningbasedonstatisticmodel[4].Artificialneuralnetworkwaslimitedtocomplexstructureandheavytrainingtime.Neuralnetworksreappearedasdeeplearningwhichcouldlearnfeaturehierarchywiththedevelopmentofhardwarein2006.Thepurposeofdeeplearningistolearnmultiplelevelsofrepresentationandfindinterestingstructureindata[5].Moderndeeplearningmethodscanrepresentfunctionsofincreasingcomplexityasthelayerisadded.Thewayofprocessingdataindeeplearningissimilartohumanbrain.Deeplearninghasmadegreatprogressintheseyears.IthasbeenappliedtoobjectrecognitiontasksinImageNetandfeaturelearningfromunlabeleddata[6].Multiplelevelsofrepresentationandunderlyingdistributionofthedatacanbeautomaticallylearnedwithdeeplearning[7].ConvolutionalNeuralNetworks(CNNs)areatypeoffullytrainablemodelswithmulti-layer[8].CNNsarebiologically-inspiredvariantsofMLPsderivedfromHubelWieselmodel,whicharesuccessfulinvisualprocessingalgorithms.TheCNNsareavarietyofdeeplearningmethods,*Correspondingauthor:YuQIAO,qiaoyu@sjtu.edu.cnwhichcanlearnadeepfeaturehierarchyfromimages[9].CNNhasadvantagesonprocessingimageswhosetrainingdataisnotlimitedtoID.TrainingdataofCNNcanbeIDacousticdata,2Dimagedataor3Dvideodata.ThehiddenlayersofaCNNconsistofconvolutionallayersandpoolinglayers[10].Featuremapsofthelayerrepresentthenumberoffeaturesextractedfromprecedinglayer.Filtersinthelayerareusedtoprocessfeaturemapspassedfromformerlayer.Filtersareidenticaltothenumberoffeaturemaps.TherearequiteafewlimitationsinbrainMRIsegmentation.SegmentingbrainMRIwithtraditionalmethodsistime-consumingandrequirespriormedicalknowledge.Inaddition,trainingdataisanothermajorconcerninbrainMRI.ItisusuallyhardtocollectbrainMRI.ToovercomethedifficultiesinbrainMRIsegmentation,weimplementedapatch-basedCNNwithtimecostsufficientlylow.TheproposedCNNoutperformsotherCNNswithdifferentstructuresandANNsinsegmentationaccuracy.Patch-basedCNNhaswellsolvedaninsufficientamountoftrainingdata.2MethodThispaperusedthedatafromapublicdataset,whichcanbedownloadatCANDIneuroimagingaccesspointtoconducttheexperiment.JeanA.Frazier,et.al.manuallysegmentedMRIsinthisdataset[11].Itcomprises103MRIsfromfourdiagnosticgroups:BipolarDisorderwithPsychosis,BipolarDisorderwithoutPsychosis,SchizophrenicSpectrumandhealthycontrol[12].Thesubjectsarefromthe6to17agegroup,includingchildrenandadolescents,femaleandmale.AlloftheimageswererecruitedattheMcLeanHospitalBrainImagingCenterona1.5-Teslamagneticresonancescanner(GeneralElectricSignaScanner)[13].2.1DataPreprocessingInthispaper,weextractedafewsmallsetsofMRIsfromthedatasetrandomly,eachsetconsistsof4to5MRIs.WedividedMRIswhosesizeis256x256to32x32and13x13patchesaccordingtothelabeloneachpixel.QuietafewpatchesextractedfrombrainMRIareuselessduetoimagingmodality.About25000of65536patchesareleft:asourtrainingset.Eachpixelismarkedbythelabelofcentralpixelineach32x32or13x13patch.Trainingsetcontainsabout100000patchesusedtotrainnetworks.7026Informula(2),(3jdenotescoefficientofpooling.Re