正弦定理练习题1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A.6B.2C.3D.262.在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.42B.43C.46D.3233.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为()A.45°或135°B.135°C.45°D.以上答案都不对4.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于()A.1∶5∶6B.6∶5∶1C.6∶1∶5D.不确定5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=()A.1B.12C.2D.146.在△ABC中,若cosAcosB=ba,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形7.已知△ABC中,AB=3,AC=1,∠B=30°,则△ABC的面积为()A.32B.34C.32或3D.34或328.△ABC的内角A、B、C的对边分别为a、b、c.若c=2,b=6,B=120°,则a等于()A.6B.2C.3D.29.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=3,C=π3,则A=________.10.在△ABC中,已知a=433,b=4,A=30°,则sinB=________.11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.12.在△ABC中,a=2bcosC,则△ABC的形状为________.13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.14.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csinA-2sinB+sinC=________.15.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.16.在△ABC中,b=43,C=30°,c=2,则此三角形有________组解.17.△ABC中,ab=603,sinB=sinC,△ABC的面积为153,求边b的长.正弦定理1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A.6B.2C.3D.26解析:选A.应用正弦定理得:asinA=bsinB,求得b=asinBsinA=6.2.在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.42B.43C.46D.323解析:选C.A=45°,由正弦定理得b=asinBsinA=46.3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为()A.45°或135°B.135°C.45°D.以上答案都不对解析:选C.由正弦定理asinA=bsinB得:sinB=bsinAa=22,又∵ab,∴B60°,∴B=45°.4.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于()A.1∶5∶6B.6∶5∶1C.6∶1∶5D.不确定解析:选A.由正弦定理知sinA∶sinB∶sinC=a∶b∶c=1∶5∶6.5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=()A.1B.12C.2D.14解析:选A.C=180°-105°-45°=30°,由bsinB=csinC得c=2×sin30°sin45°=1.6.在△ABC中,若cosAcosB=ba,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形解析:选D.∵ba=sinBsinA,∴cosAcosB=sinBsinA,sinAcosA=sinBcosB,∴sin2A=sin2B即2A=2B或2A+2B=π,即A=B,或A+B=π2.7.已知△ABC中,AB=3,AC=1,∠B=30°,则△ABC的面积为()A.32B.34C.32或3D.34或32解析:选D.ABsinC=ACsinB,求出sinC=32,∵AB>AC,∴∠C有两解,即∠C=60°或120°,∴∠A=90°或30°.再由S△ABC=12AB·ACsinA可求面积.8.△ABC的内角A、B、C的对边分别为a、b、c.若c=2,b=6,B=120°,则a等于()A.6B.2C.3D.2解析:选D.由正弦定理得6sin120°=2sinC,∴sinC=12.又∵C为锐角,则C=30°,∴A=30°,△ABC为等腰三角形,a=c=2.9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=3,C=π3,则A=________.解析:由正弦定理得:asinA=csinC,所以sinA=a·sinCc=12.又∵a<c,∴A<C=π3,∴A=π6.答案:π610.在△ABC中,已知a=433,b=4,A=30°,则sinB=________.解析:由正弦定理得asinA=bsinB⇒sinB=bsinAa=4×12433=32.答案:3211.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.解析:C=180°-120°-30°=30°,∴a=c,由asinA=bsinB得,a=12×sin30°sin120°=43,∴a+c=83.答案:8312.在△ABC中,a=2bcosC,则△ABC的形状为________.解析:由正弦定理,得a=2R·sinA,b=2R·sinB,代入式子a=2bcosC,得2RsinA=2·2R·sinB·cosC,所以sinA=2sinB·cosC,即sinB·cosC+cosB·sinC=2sinB·cosC,化简,整理,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B=C.答案:等腰三角形13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.解析:由正弦定理得a+b+csinA+sinB+sinC=asinA=63sin60°=12,又S△ABC=12bcsinA,∴12×12×sin60°×c=183,∴c=6.答案:12614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csinA-2sinB+sinC=________.解析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=asinA=1sin30°=2,又∵a=2RsinA,b=2RsinB,c=2RsinC,∴a-2b+csinA-2sinB+sinC=2RA-2sinB+sinCsinA-2sinB+sinC=2R=2.答案:215.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.解析:依题意,sinC=223,S△ABC=12absinC=43,解得b=23.答案:2316.在△ABC中,b=43,C=30°,c=2,则此三角形有________组解.解析:∵bsinC=43×12=23且c=2,∴cbsinC,∴此三角形无解.答案:017.如图所示,货轮在海上以40km/h的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时后船到达C点,观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?解:在△ABC中,BC=40×12=20,∠ABC=140°-110°=30°,∠ACB=(180°-140°)+65°=105°,所以∠A=180°-(30°+105°)=45°,由正弦定理得AC=BC·sin∠ABCsinA=20sin30°sin45°=102(km).即货轮到达C点时,与灯塔A的距离是102km.18.在△ABC中,a、b、c分别为角A、B、C的对边,若a=23,sinC2cosC2=14,sinBsinC=cos2A2,求A、B及b、c.解:由sinC2cosC2=14,得sinC=12,又C∈(0,π),所以C=π6或C=5π6.由sinBsinC=cos2A2,得sinBsinC=12[1-cos(B+C)],即2sinBsinC=1-cos(B+C),即2sinBsinC+cos(B+C)=1,变形得cosBcosC+sinBsinC=1,即cos(B-C)=1,所以B=C=π6,B=C=5π6(舍去),A=π-(B+C)=2π3.由正弦定理asinA=bsinB=csinC,得b=c=asinBsinA=23×1232=2.故A=2π3,B=π6,b=c=2.19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos2A=35,sinB=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.解:(1)∵A、B为锐角,sinB=1010,∴cosB=1-sin2B=31010.又cos2A=1-2sin2A=35,∴sinA=55,cosA=255,∴cos(A+B)=cosAcosB-sinAsinB=255×31010-55×1010=22.又0<A+B<π,∴A+B=π4.(2)由(1)知,C=3π4,∴sinC=22.由正弦定理:asinA=bsinB=csinC得5a=10b=2c,即a=2b,c=5b.∵a-b=2-1,∴2b-b=2-1,∴b=1.∴a=2,c=5.20.△ABC中,ab=603,sinB=sinC,△ABC的面积为153,求边b的长.解:由S=12absinC得,153=12×603×sinC,∴sinC=12,∴∠C=30°或150°.又sinB=sinC,故∠B=∠C.当∠C=30°时,∠B=30°,∠A=120°.又∵ab=603,asinA=bsinB,∴b=215.当∠C=150°时,∠B=150°(舍去).