新课标全国卷Ⅰ文科数学汇编数列一、选择题【2015,7】已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10=()A.172B.192C.10D.12【2013,6】设首项为1,公比为23的等比数列{an}的前n项和为Sn,则().A.Sn=2an-1B.Sn=3an-2C.Sn=4-3anD.Sn=3-2an【2012,12】数列{na}满足1(1)21nnnaan,则{na}的前60项和为()A.3690B.3660C.1845D.1830二、填空题【2015,13】数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=.【2012,14】14.等比数列{}na的前n项和为nS,若3230SS,则公比q_____.三、解答题【2017,17】记nS为等比数列na的前n项和,已知22S,36S.(1)求na的通项公式;(2)求nS,并判断1nS,nS,2nS是否成等差数列.【2016,17】已知na是公差为3的等差数列,数列nb满足12111==3nnnnbbabbnb1,,.(1)求na的通项公式;(2)求nb的前n项和.【2013,17】已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列21211nnaa的前n项和.【2011,17】已知等比数列a中,213a,公比13q.(1)nS为na的前n项和,证明:12nnaS;(2)设31323logloglognnbaaa,求数列nb的通项公式.解析一、选择题【2015,7】已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10=()BA.172B.192C.10D.12解:依题11118874(443)22aa,解得1a=12,∴1011199922aad,故选B.【2015,13】数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=.6解:数列{an}是首项为2,公比为2的等比数列,∴2(12)12612nnS,∴2n=64,∴n=6.【2013,6】设首项为1,公比为23的等比数列{an}的前n项和为Sn,则().A.Sn=2an-1B.Sn=3an-2C.Sn=4-3anD.Sn=3-2an解析:选D.11211321113nnnnaaaqaqSqq=3-2an,故选D.【2012,12】数列{na}满足1(1)21nnnaan,则{na}的前60项和为()A.3690B.3660C.1845D.1830【解析】因为1(1)21nnnaan,所以211aa,323aa,435aa,547aa,659aa,7611aa,……,5857113aa,5958115aa,6059117aa.由211aa,323aa可得132aa;由659aa,7611aa可得572aa;……由5857113aa,5958115aa可得57592aa;从而1357575913575759()()()21530aaaaaaaaaaaa.又211aa,435aa,659aa,…,5857113aa,6059117aa,所以2466013559()()aaaaaaaa2143656059()()()()aaaaaaaa1591173011817702.从而24660aaaa135591770aaaa3017701800.因此6012345960Saaaaaa13592460()()aaaaaa3018001830.故选择D.二、填空题【2015,13】数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=.6解:数列{an}是首项为2,公比为2的等比数列,∴2(12)12612nnS,∴2n=64,∴n=6.【2012,14】14.等比数列{}na的前n项和为nS,若3230SS,则公比q___________.【答案】2.【解析】由已知得23123111Saaaaaqaq,2121133333Saaaaq,因为3230SS,所以2111440aaqaq而10a,所以2440qq,解得2q.三、解答题【2017,17】记nS为等比数列na的前n项和,已知22S,36S.(1)求na的通项公式;(2)求nS,并判断1nS,nS,2nS是否成等差数列.【解析】(1)设首项1a,公比q,依题意,1q,由3328aSS,23122121182aaqSaaaaq,解得122aq,1(2)nnnaaq.(2)要证12,,nnnSSS成等差数列,只需证:122nnnSSS,只需证:120nnnnSSSS,只需证:1120nnnaaa,只需证:212nnaa(*),由(1)知(*)式显然成立,12,,nnnSSS成等差数列.【2016,】17.(本小题满分12分)已知na是公差为3的等差数列,数列nb满足12111==3nnnnbbabbnb1,,.(1)求na的通项公式;(2)求nb的前n项和.17.解析(1)由题意令11nnnnabbnb中1n,即1221abbb,解得12a,故*31nannN.(2)由(1)得1131nnnnbbnb,即113nnbb*nN,故nb是以11b为首项,13q为公比的等比数列,即1*13nnbnN,所以nb的前n项和为1111313122313nnnS.【2013,17】(本小题满分12分)已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列21211nnaa的前n项和.解:(1)设{an}的公差为d,则Sn=1(1)2nnnad.由已知可得11330,5105,adad解得a1=1,d=-1.故{an}的通项公式为an=2-n.(2)由(1)知21211nnaa=1111321222321nnnn,从而数列21211nnaa的前n项和为1111111211132321nn=12nn.【2011,17】已知等比数列a中,213a,公比13q.(1)nS为na的前n项和,证明:12nnaS;(2)设31323logloglognnbaaa,求数列nb的通项公式.【解析】(1)因为1111333nnna,111113332113nnnS,所以12nnaS.(2)31323logloglognnbaaa12n12nn.所以nb的通项公式为12nnnb.