第四章习题4.6求下列周期信号的基波角频率Ω和周期T。(1)tje100(2))]3(2cos[t(3))4sin()2cos(tt(4))5cos()3cos()2cos(ttt(5))4sin()2cos(tt(6))5cos()3cos()2cos(ttt4.7用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。图4-154.10利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率分量。图4-184-11某1Ω电阻两端的电压)(tu如图4-19所示,(1)求)(tu的三角形式傅里叶系数。(2)利用(1)的结果和1)21(u,求下列无穷级数之和......7151311S(3)求1Ω电阻上的平均功率和电压有效值。(4)利用(3)的结果求下列无穷级数之和......7151311222S图4-194.17根据傅里叶变换对称性求下列函数的傅里叶变换(1)ttttf,)2()]2(2sin[)((2)tttf,2)(22(3)ttttf,2)2sin()(24.18求下列信号的傅里叶变换(1))2()(tetfjt(2))1(')()1(3tetft(3))9sgn()(2ttf(4))1()(2tetft(5))12()(ttf4.19试用时域微积分性质,求图4-23示信号的频谱。图4-234.20若已知)(j])([FtfF,试求下列函数的频谱:(1))2(ttf(3)dttdft)((5))-1(t)-(1tf(8))2-3(tfejt(9)tdttdf1*)(4.21求下列函数的傅里叶变换(1)000,1,)(jF(3))(3cos2)(jF(5)1)(2n-20sin2)(jjneF4.23试用下列方式求图4-25示信号的频谱函数(1)利用延时和线性性质(门函数的频谱可利用已知结果)。(2)利用时域的积分定理。(3)将)(tf看作门函数)(2tg与冲激函数)2(t、)2(t的卷积之和。图4-254.25试求图4-27示周期信号的频谱函数。图(b)中冲激函数的强度均为1。图4-274.27如图4-29所示信号)(tf的频谱为)(jF,求下列各值[不必求出)(jF](1)0|)()0(jFF(2)djF)((3)djF2)(图4-294.28利用能量等式djFdttf22)(21)(计算下列积分的值。(1)dttt2])sin([(2)22)1(xdx4.29一周期为T的周期信号)(tf,已知其指数形式的傅里叶系数为nF,求下列周期信号的傅里叶系数(1))()(01ttftf(2))()(2tftf(3)dttdftf)()(3(4)0),()(4aatftf4.31求图4-30示电路中,输出电压电路中,输出电压)(2tu对输入电流)(tiS的频率响应)()()(2jIjUjHS,为了能无失真的传输,试确定R1、R2的值。图4-304.33某LTI系统,其输入为)(tf,输出为dxxfaaxsaty)2()(1)(式中a为常数,且已知)()(jSts,求该系统的频率响应)(jH。4.34某LTI系统的频率响应jjjH22)(,若系统输入)2cos()(ttf,求该系统的输出)(ty。4.35一理想低通滤波器的频率响应sradsradjH/3,0/3,31)(4.36一个LTI系统的频率响应其他,0/60,0/6,)(22sradesradejHjj若输入)5cos()3sin()(ttttf,求该系统的输出)(ty。4.39如图4-35的系统,其输出是输入的平方,即)()(2tfty(设)(tf为实函数)。该系统是线性的吗?(1)如tttfsin)(,求)(ty的频谱函数(或画出频谱图)。(2)如)2cos(cos21)1(ttf,求)(ty的频谱函数(或画出频谱图)。4.45如图4-42(a)的系统,带通滤波器的频率响应如图(b)所示,其相频特性0)(,若输入)1000cos()(,2)2sin()(ttstttf求输出信号)(ty。图4-424.48有限频带信号)(tf的最高频率为100Hz,若对下列信号进行时域取样,求最小取样频率sf。(1))3(tf(2))(2tf(3))2(*)(tftf(4))()(2tftf4.50有限频带信号)4cos()2cos(25)(11tftftf,其中kHzf11,求Hzfs800的冲激函数序列)(tT进行取样(请注意1ffs)。(1)画出)(tf及取样信号)(tfs在频率区间(-2kHz,2kHz)的频谱图。(2)若将取样信号)(tfs输入到截止频率Hzfc500,幅度为的理想低通滤波器,即其频率响应HzfHzfTfjHjHs500,0500,)2()(画出滤波器的输出信号的频谱,并求出输出信号)(ty。图4-47图4-48图4-494.53求下列离散周期信号的傅里叶系数。(2))4)(30()21()(Nkkfk