电压、电流互感器互感器的的作用1.与测量仪表配合,对线路的电压、电流、电能进行测量;与继电器配合,对系统和电气设备进行过电压、过电流和单相接地等保护2.将测量仪表、继电保护装置和线路的高电压隔离开,以保证操作人员和设备的安全3.将电压和电流变换成统一的标准值,以利于仪表和继电器的标准化电压互感器1、电压互感器的原理、结构及铭牌数据意义①电压互感器实际上是一个降压变压器,它的一次线圈匝数很多,二次线圈匝数很少,一次侧并联地接在电力系统中,二次侧可并接仪表、继电保护和自动装置的电压线圈等负载,由于这些负载阻抗很大,通过的电流很小,因此,电压互感器的工作状态相当于变压器的空载运行。电压互感器一次侧作用着一个恒压源,它不受互感器二次负载的影响(因电压互感器二次线圈阻抗很大,吸取系统功率很小)。②电压互感器二次回路不允许短路,因为其正常运行时二次基本上是开路状态,二次绕组匝数少,阻抗较小。若二次短路后,铁芯中的磁势失去平衡,在二次回路中会产生很大的短路电流,造成继电保护和自动装置误动作,甚至烧毁互感器。③电压互感器一次线圈中性点必须接地(工作接地),二次线圈的中性点必须接地(保护接地)。④35KV及以下电压互感器一般采用电磁型干式、环氧树脂浇注和油浸式三种。35KV采用JDJJ型或JDJ型,三个单相一次星形接线,二次线圈两套,其一主线圈接保护和表计,辅助线圈接成开口三角形用来反映系统接地零序电压的变化。⑤铭牌技术参数:A、变比及额定电压:35000/100/100/V;110000//100/100B、等级与容量:由于电压互感器的误差随它的负荷值改变而改变,所以其容量是和一定的准确度相适应的。一般说的电压互感器的额定容量指的是对应于最高准确度的容量值。负荷功率越大,准确度会降低。2、电容式电压互感器原理被测装置与地之间有若干相同的电容器串联,此时将电容器串分成电容C1和电容C2两部分。电容C1和C2串联,U1为原边电压,Uc2为C2上的电压。空载时,电容C2上的电压Uc2,则C2上的电压为:式中分压比K=C1/C1+C2,改变C1和C2就可得到不同的分压比,而Uc2与一次电压U1成正比,则测得Uc2就可以测到U1,这就是电容式电压互感器的原理。3、原理图解说中间变压器T:将中压电容器上的电压降到所需的二次电压值,也起电压隔离作用。排流线圈L1:将电容分压器的工频电流引入大地补偿电感L:串入电感,可以补偿电容内阻抗,使电压稳定。保护间隙P:限制冲击过电压。氧化锌避雷器BL:用来限制补偿电抗器和变压器的过电压。阻尼电阻ZD:防止持续的铁磁谐振。4、电容式电压互感器的误差(1)当C2两端接入电压表和继电器等负荷时,回路中流过的负荷电流增大,实测的Uc2′减小。为此,在实用中分压电容C2的两端接入中间变压器,减小二次回路电流以减小测量误差。(2)中间变压器的接入,将使分压系数发生变化,并受到二次负载影响而改变C2两端的等效阻抗。为了稳定分压系数,从而保证互感器的精度,中间变压器输入端串入谐振电感L。(3)电容和电感均有内阻,受频率的影响较大。当电网频率变化时,电抗也要发生变化。因此,电容式电压互感器的变比对电网频率的变化较为敏感,其精度仍然相对较低。(4)由于L是个非线性电感,当电网电压升高或副边负载阻抗下降时,互感器电流增加,当L进入饱和区时,感抗与负载之和与电容电抗相等,互感器进入铁磁谐振状态,这时产生很大的电流并在电容C2两端形成很高的过电压。当非全向进入谐振状态时,副边开口三角形输出超过零序电压整定值,使继电保护误发电网接地信号。5、电压互感器参数(1)变压比是使一次绕组和二次绕组的额定电压之比。(2)准确级次-是以最大变比误差和相角误差来区分的,准确级次在数值上就是变比误差等级的百分限值。(3)电压互感器的容量,是指二次绕组允许接入的负荷功率,分为额定容量和最大容量两种,以VA值表示,由于电压互感器的电压是随着二次负荷功率的大小而变化的,容量增大,准确度降低。型号:JSQX3-126额定频率50额定一次电压110/100/√3KV二次绕组端子1a-1n2a-2nda-dn额定二次电压(KV)0.1/√30.1/√30.1准确级0.20.53P额定输出容量(VA)303050额定电压因数1.2倍1.5倍连续30sSF6气体重量13kg6、电压互感器的接线方式4、电压互感器接线方式电压互感器在三相系统中要测量的电压有:线电压、相对地电压和单相接地时出现的零序电压。(1)一台单相互感器可测量35KV及以下系统的线电压,或110KV以上中性点直接接地系统的相对地电压。(2)两台单相电压互感器接成V-V型接线它能测量线电压,但不能测量相电压。这种接线方式广泛用于中性点非直接接地的系统。(3)一台三相三柱式电压互感器的Y-Y型接线它只能测量线电压,不能用来测量相对地电压,因为一次侧绕组的星型接线中性点不能接地。在中性点非直接接地系统发生单相接地时,接地相对地电压为零,未接地相对地电压上升√3倍,三相对地电压失去平衡,出现零序电压。有零序电压的作用下,电压互感器的三个铁芯柱中将出现零序磁通,三相零序磁通同相位,在在三个铁芯柱中不能形成闭合回路,只能通过空气气隙和外壳成为回路,使磁路磁阻增大,这样可使电压互感器过热,甚至烧坏。(4)一台三相五柱式电压互感器的Y0-Y0-D型接线其一次侧绕组和基本二次绕组接成星型,且中性点接地,辅助二次绕组接成开口三角形。因此,三相五柱式电压互感器可以测量线电压和相对地电压,也可以作为中性点非直接接地系统对地的绝缘监察以及实现单相接地的继电保护,这种接线广泛用于6~10KV屋内配电装置中。三相绕组在中间三个柱上,当系统发生单相接地时,零序磁通可通过两边铁芯组成回路,因此磁阻很小,则零序电流很小。中性点非直接接地三相系统中,正常运行时各相电压为相电压,三相电压的向量和为零,因此开口三角形两端子间有电压,为各辅助二次绕组中零序电压之的向量和,规定开口三角形两端子间的额定电压为100V,因为各相零序电压相等、相位相同,故辅助二次绕组的额定电压为100√3V。(5)三台单相电压互感器的Y0-Y0-D型接线在中性点非直接接地系统中采用三只单相电压互感器,情况与三相五柱式电压互感器相同,只是在单相接地时,各相零序磁通以各自的电压互感器铁芯成为回路。在110kV及以上中性点直接接地系统中,也广泛采用这种接线,只是一次侧不装熔断器。基本二次绕组可供测量线电压和相对地电压。辅助二次绕组接成开口三角形,供单相接地保护用,因为当发生单相接地时,未接地相电压并不发生变化,仍为相电压,开口三角形两端子间的电压为非故障相对地电压的向量和。规定开口三角形两端子间的额定电压为100V。。5、电压互感器接线应注意的问题(1)二次回路接线应采用截面积不小于1.5mm2的绝缘铜线,排列应当整齐,连接必须良好,盘、柜内的二次回路接线不应有接头。(2)电压互感器的外壳和二次回路的一点也应良好接地。用于绝缘监视的电压互感器的一次绕组中性点也必须接地。(3)为防止电压互感器一、二回路短路的危险,一、二次回路都应装有熔断器。接成开口三角形的二次回路即使发生短路,也只流过微小的不平衡电流和三次谐波电流,故不装设熔断器。(4)电压互感器二次回路中的工作阻抗不得太小以避免超负载运行。(5)电压互感器的极性和相序必须正确。6、对于电压互感器回路断线处理(1)根据继电保护和自动装置有关规定退出有关保护,防止误动作;(2)检查高、低压熔断器及自动开关是否正常,如熔断器熔断,应查明原因立即更换,当再次熔断时则应慎重处理;(3)检查电压回路所有接头有无松动、断头现象,切换回路有无接触不良现象。7、对于电流互感器二次回路开路处理方法:(1)立即报告调度值班员,按继电保护和自动装置有关规定退出有关保护;(2)查明故障点,在保证安全前提下,设法在开路处附近端子上将其断路,短路时不得使用熔丝。如不能消除开路,应考虑停电处理。9、停用电压互感器应注意的问题(1)不使保护自动装置失去电压。(2)必须进行电压切换(3)防止反充电,取下二次熔断器(包括电容器)(4)二次负荷全部断开后,断开互感器一次侧电源。10、电压互感器故障对继电保护的影响电压互感器二次回路经常发生的故障包括:熔断器熔断,隔离开关辅助接点接触不良,二次接线松动等。故障的结果是使继电保护装置的电压降低或消失,对于反映电压降低的保护继电器和反映电压、电流相位关系的保护装置,譬如方向保护、阻抗继电器等可能会造成误动和拒动。11、光电式电压互感器介绍光电互感器是基于光学和电子学原理发展起来的比较成熟及最有发展前景的一种超高压条件下的测量方法。光电互感器大致可分为三大部分:高电位侧信号采集处理部分、地电位侧信号处理部分、高电位侧电源供电部分。采用罗哥夫斯基线圈、低功率电流互感器、串联感应分压器等新技术,使测量准确度达到0.1级,又在结构中采用光纤能量和信号传输、特种固态绝缘脂真空灌注等技术,增强了抗EMI性能和绝缘性能,使可靠性大大提高。12、相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。2、电压互感器的运行与操作规定①电压互感器在额定容量下允许长期运行,但在任何情况下,不允许超过最大容量运行。②电压互感器在运行中不能短路。如果在运行中,发生短路现象,二次电路的阻抗值大大减少,就会出现很大的短路电流,使二次线圈严重过热而烧毁。因此,在运行中值班人员要注意检查高、低压侧熔断器应良好,如果发现有发热及熔断现象,应及时处理。③在双母线接线中,两个母线上的电压互感器如需二次并列运行时,则应先将一次侧实连,即合上母联开关,然而再合上电压互感器二次并列小开关。否则,若高压侧电压不平衡,低压侧并列后回路内会产生较大的环流,容易引起低压熔断器熔断,致使保护装置失去电压互感器电源。④电压互感器在运行中,发生一次侧高压熔断器熔断时,运行人员应正确判断,汇报领导,停用有关保护及自动装置,然后拉开电压互感器的隔离开关,取下二次侧熔丝(或断开电压互感器二次小开关)。在排除电压互感器本身故障后,更换熔断的高压熔丝,将电压互感器投入运行,正常后投上保护及自动装置。3、造成电压互感器高压侧熔丝熔断的原因有:1)互感器内部线圈发生匝间、层间或相间短路及一相接地等故障。2)电压互感器一、二次回路故障,可能造成电压互感器过电流。若电压互感器二次侧熔丝容量选择不合理,也有可能造成一次侧熔丝熔断。3)当中性点不接地系统中发生一相接地时,其他两相电压升高倍;或由于间歇性电弧接地,可能产生数倍的过电压。这些过电压都会使互感器铁芯饱和,将使电流急剧增加而造成熔丝熔断。4)系统发生铁磁谐振。在中性点不接地系统中,由于发生单相接地或用户电压互感器数量的增加,使母线或线路的电容与电压互感器的电感构成振荡回路,在一定的条件下,会引起铁磁谐振故障。这时,电压互感器上将产生过电压或过电流。电流的激增,除了造成一次侧熔丝熔断外,还常导致电压互感器的烧毁事故。⑥在电压互感器运行中,发生二次侧熔丝熔断(或电压互感器小开关跳闸),运行人员应正确判断,汇报领导,停用有关保护及自切装置。4、造成电压互感器二次侧熔丝熔断的原因有:1)二次回路导线受潮、腐蚀及损伤而发生一相接地,便可能发展成二相接地短