··Science&TechnologyVisionScience&TechnologyVision0,,.、,.,,,,,,,,.,.1,,,,.1,、(、),n.:y==cosxn.y′=-sinx=cos(x+π2),y″=-sin(x+π2)=cos(x+π2+π2)=cos(x+2×π2),y′″=-sin(x+2×π2)=cos(x+3×π2),,(cosx)(n)=cos(x+n×π2).2(uv)′=u′v+uv′.:(u1u2…un)′=u1′u2u3…un+u1u2′u3…un+…+u1u2…un-1un′.、,n[1];,、,n、m,[2-3].,,[4-5]、……,.2().,,、、,、,.3:(u+v)1=u+v(u+v)2=u2+2uv+v2(u+v)3=u3+3u2v+3uv2+v3……(u+v)n=nk=0ΣCknun-kvk:(uv)′=u′v+uv′(uv)″=u″+2u′v′+v″(uv)′″=u′″+3u″v′+3u′v″+v′″……(uv)n=nk=0ΣCknu(n-k)v(k),,,u+vuv,nn(),,.4,:(x1-x2)2+(y1-y2)2姨,:(x1-x2)2+(y1-y2)2+(z1-z2)2姨:(x-a)2+(y-b)2=R2:(x-a)2+(y-b)2+(z-c)2=R2:xa+yb=1:xa+yb+zc=1,、、.、、、、,、、、.,.3,、,,,.3.15乙x31+x2姨dx(,730000)【】在高等数学教学过程中,应结合教学内容,适时、恰当地培养学生的归纳、类比、发散等多种创新思维.可增强学生对所学知识的理解和掌握,激发学生的学习兴趣,使教学更具有生动性和趣味性,对提高教学效果有着重要的作用.本文对高等数学的教与学提供了一定的参考意义.【】高等数学;创新思维;学习兴趣CultivationofInnovativeThinkingintheHigherMathematicsTeachingYANGHai-xia(NormalCollegeofLanzhouUniversityofArtsandScience,LanzhouGansu730000,China)【Abstract】Intheprocessofhighermathematicsteaching,Inductivethinking,analogicalthinking,divergentthinkingandotherinnovativethinkingshouldbecultivatedtimelyandproperlyaccordingtotheneedsofteachingcontents.Itcanstrengthenstudents’understandingandmasteringofknowledge.Italsocanstimulatestudents’learninginterestandmaketheteachingmorevividandinteresting.Thecultivationofinnovativethinkingplaysanimportantroleinimprovingtheteachingeffect.Thepresentpaperprovidesreferencesignificancehowtoteachandstudyadvancedmathematics.【Keywords】Highermathematics;Innovativethinking;Learninginterest※:(41272147)。:杨海霞(1972—),女,甘肃天水人,硕士,兰州文理学院,讲师,主要从事生物数学研究。84Science&TechnologyVisionScience&TechnologyVision··()1I=乙x31+x2姨dx=乙x2d1+x2姨=乙(x2+1-1)d1+x2姨=乙(x2+1)d1+x2姨-乙d1+x2姨=131+x2姨(x2-2)+C2I=乙x31+x2姨dx=12乙x21+x2姨d(x2)=12乙x2+1-11+x2姨d(1+x2)=131+x2姨(x2-2)+C=13(1+x2)32-(1+x2)123I=乙x31+x2姨dx=乙x3+x-x1+x2姨dx=乙x(x2+1)-x1+x2姨dx=乙x1+x2姨dx-乙x1+x2姨dx=131+x2姨(x2-2)+C()4x=tantI=乙tan3tsect·sec2tdt=乙sin3tcos4tdt=乙cos2t-1cos4td(cost)=-1cost+131cos3t+C=-1+x2姨+13(1+x2)32+C=131+x2姨(x2-2)+C5t=1+x2姨I=乙x2·x1+x2姨dx=乙t2-1ttdt=乙(t2-1)dt=13t3-t+C=131+x2姨(x2-2)+C()6I=乙x31+x2姨dx=乙x31-x2姨1-x4姨dx=-12乙1-x2姨d(1-x4姨)=-12[1-x2姨1-x2姨-乙1-x4姨d(1-x2姨)]=-12[(1-x2)1+x2姨+12乙1+x2姨d(1+x2)]=131+x2姨(x2-2)+C7I=乙x31+x2姨dx=乙x2d(1+x2姨)=x21+x2姨-乙1+x2姨d(1+x2)=x21+x2姨-23(1+x2)32+C=131+x2姨(x2-2)+C.,,,,,,.6limx→01-cosx2x3sinx(;;limx→0sinxx=1;;.)3.27x2dx=y2dx+2xydy(1)dydx=1-(yx)22(yx),;(2)(x2-y2)dx-2xydy=0鄣P鄣y=鄣Q鄣x=-2y,;(3)dydx+12xy=x21y,z=y2,[6].4.,,,、、,,.4.1,8ydx+(x-lny)dy=0,y,x,.:dxdy+1yx=lnyy:x=lny-1+Cy4.2,9limn→∞n!nn=0∞n=1Σn!nn,limn→∞un+1un=limn→∞1(1+1n)n=1e<1,∞n=1Σn!nn,,limn→∞un=limn→∞n!nn=010y=ln(1+x)x.,f(n)(x),Rn(x).,11+x=+∞n=0Σ(-1)nxn,|x|<1,ln(1+x)=x0乙(ln(1+x))′dx=x0乙11+xdx=x0乙+∞n=0Σ(-1)nxndx=∞n=0Σ(-1)nx0乙xndx=+∞n=0Σ(-1)n1n+1xn+1,|x|<1ln(1+x)=+∞n=0Σ(-1)n-11nxn,x∈(-1,1]5:“,.”,,,.,,.,.,,(),.(88)85··Science&TechnologyVisionScience&TechnologyVision(85)11y=f(u),u=φ(x),dydx.:dudx=2,ux2,x1,u2.dydu=3,yu3,u1,y3.x1,y?(dydx=?),y3×2=6,(dydx=3×2=6),:dydx=dydu·dudx..,,,.,,、、,、、,,,.:“,,,,.”,.【】[1].[M].5.:,2004.[2].[M].3.:,2001.[3].[M].2.:,1994.[4].[M].:,2003.[5].[M].:,2004.[6],.200[M].:,2002.[:]S2.1.6,,,,,。2.1.7,。,,,,,,,,,。,。2.1.82,24V,5V,。。23,,,3。,,,,,,,,,。,,。,,,,,1,,,。,,,,,。,。34,,,,,,,。【】[1].ISD4004[J].,2003,7:61-62.[2],,.ISD4004[J].,2003,3,2(1):55-56.[3],,,.[J].,2012,1,30(1):84-87.[4].[M].2.:,2009,1.[:]S88