第6讲-动量定理-角动量定理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第6讲力与运动的关系动量定理(1)一、动量定理:vmtF(微元法)1、以速度大小为v1竖直向上抛出一小球,小球落回地面时的速度大小为v2,设小球在运动过程中受空气阻力大小与速度大小成正比fkv,求小球在空中运动的时间t=?(高度h=?)2、质量为m,长为L的均匀软铁链用细绳悬在天花板上,下端刚好接触地面.某时刻细绳突然断了,软铁链自由落下,求:(1)从悬绳断开到铁绳全部落至地面过程中地面对铁绳的平均弹力?(2)若地面改为电子秤托盘面,求秤的最大读数为铁链重力的几倍?(隔离分析微元或整体“导数”)(练习)一根均匀柔软绳长为L,质量为m,对折后两端固定在一个钉子上.其中一端突然从钉子上脱落,求下落端的端点离钉子的距离为x时,钉子对绳子另一端的作用力.(机械能不守恒)3、质量很大的平板沿水平方向以速度v0运动.一小球在高度为H处从静止自由下落,并与平板相碰,小球与平板间的摩擦系数为μ,小球反弹时相对地面的速度为v,与水平面的夹角为α,反弹后达到的最大高度仍为H,试讨论α与高度H的关系.(注:当“碰撞”作用时间极短时,可忽略有限大小力的冲量.)(ft与Nt关系怎样?)LAB二、动量守恒定律①系统在某一方向上所受合外力为零,则系统在这一方向上动量守恒.②当物体间内作用时间极短时,忽略有限大小外力的冲量,动量守恒.1、图为两弹性小球1和2,球1的质量为m1,初速为v10;球2的质量为m2,静止.两球相碰后,球l的速度方向与碰前速度方向垂直,球2的速度方向与球l的初速方向夹角θ,sin0.6.试求两球碰后的速度大小以及恢复系数、总机械能的损失?(斜碰,没有摩擦作用,211020vvevv仅在弹性作用方向体现)2、如图所示,光滑水平面上有一长为L的平板小车,其质量为M,车左端站着一个质量为m的人,车和人都处于静止状态,若人要从车的左端刚好跳到车的右端,至少要多大的速度(相对地面)?(设速度大小v、方向θ)(练习)如图所示,固定在小车上的弹簧发射器以及小车的质量为3m,发射筒与水平面成45°角,小车放在光滑水平面上,被发射的小球质量为m,现将弹簧压缩L后放入小球,从静止开始,将小球弹射出去.已知小球的射高为H,不计小球在发射筒内的重力势能变化.试求弹簧的劲度系数k.(小球相对地面的出射速度≠45°)3、如图所示,质量均为m的两质点A和B,由长为L的不可伸长的轻绳相连,B质点限制在水平面上的光滑直槽内,可沿槽中滑动,开始时A质点静止在光滑桌面上,B静止在直槽内,AB垂直于直槽且距离为L/2,如质点A以速度v0在桌面上平行于槽的方向运动,求证:当B质点开始运动时,它的速度大小为3v0/7;并求绳受到的冲量和槽的反作用力冲量?(寻找守恒量:A+B在水平方向、A在垂直绳子方向上动量守恒)思考题1、质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平面上,用已拉直的不可伸长的柔软的轻绳AB和BC连结,角ABC为-,为一锐角,如图所示,今有一冲量为I的冲击力沿BC方向作用于质点C,求质点A开始运动时的速度.思考题2、如图所示,三个质量都是m的刚性小球A、B、C位于光滑的水平桌面上(图中纸面),A、B之间,B、C之间分别用刚性轻杆相连,杆与A、B、C的各连接处皆为“铰链式”的(不能对小球产生垂直于杆方向的作用力).已知杆AB与BC的夹角为-,/2.DE为固定在桌面上一块挡板,它与AB连线方向垂直.现令A、B、C一起以共同的速度v沿平行于AB连线方向向DE运动,已知在C与挡板碰撞过程中C与挡板之间无摩擦力作用,求碰撞时当C沿垂直于DE方向的速度由v变为零这一极短时间内挡板对C的冲量的大小.L/2BAv0三、质心参考系①质心:1122c12mxmxxmm→?cv→?ca②质心运动定理:cFMa合当=0F合时,系统的质心相对地面匀速或静止,速度212211mmvmvmvc(动量视角).系统总动量P(地面系)=质心动量(cPMvc)+相对质心总动量(0P)(质心系)③Konig定理:KKcKEEE系统总动能()质心动能相对质心动能(质)地面系心系(动能视角).以二个质点为例,质量分别为m1和m2,相对于地面参考系的速度分别为1v和2v,质心C的速度为cv,二质点相对于质心的速度分别为1v和2v,于是2211,vvvvvvcc,质点系的动能2211221122KEmvmv,把1v和2v代入,且)(22112211vmvmvvvmvvmccc,括号中的求和表示质心对于自己的速度(或两物体相对质心的动量为零),必定为零.质点系的动能22222112212112211111()22222KcKcKEmvmvmmvmvmvEE,由此可见,质点系的总动能等于其质心的动能与质点相对于质心动能之和(Konig定理),对于多个质点,这个关系也成立.注:对于两体系统,质点系的动能还可以用两物体的相对速度rv和质心的速度cv表示:根据动量守恒定律cvmmvmvm)(212211,和相对速度关系12vvvr可得1v和2v,代入质点系的动能2211221122KEmvmv得:2212121211()22()KcrmmEmmvvmm.1、如图所示,一长直光滑板AB放在平台上,OB伸出台面,在左侧的D点放一质量为m1的小铁块,它以初速度v向右运动.假设直板相对桌面不发生滑动,经时间T0后直板翻倒.现让直板恢复原状,并在直板O点放上另一质量为m2的小物体,同样让m1从D点开始以v的速度向右运动,并与m2发生正碰,那么从m1开始运动后经过多少时间直板翻倒?2、如图所示,质量为M,倾角为θ的光滑斜面,放置在光滑水平面上,另有一质量为m的小物块沿斜面下滑,斜面底边长为L.当物块从斜面顶端由静止开始下滑到底端时,求:(1)斜面具有多大的速度;(2)斜面沿水平面移动的距离.LθMm3、如图所示,质量分别为m1、和m2的两滑块A和B放置在光滑的水平地面上,A,B之间用一劲度系数为k的弹簧相连.开始时两滑块静止,弹簧为原长.一质量为m的子弹以速度v0沿弹簧长度方向射入滑块A,并不再出来.试求:(1)弹簧的最大压缩长度;(2)滑块B相对地面的最大速度和最小速度.4、如图所示,质量为m的长方形箱子放在光滑的水平地面上,箱内有一质量也为m的小滑块,滑块与箱底之间无摩擦.开始时箱子不动,滑块以速度v0从箱子的A壁向B壁处运动,然后又与B壁碰撞.假定滑块每碰撞一次,两者相对速度的大小变为该次碰撞前相对速度的e倍,e=41/2.(1)要使“滑块+箱子”系统动能的总损耗不超过40%,滑块与箱壁最多可碰撞几次?(2)从滑块开始运动到刚完成上述次数的碰撞期间,箱子的平均速度是多少?5、如图所示,质量M=1Kg的箱子静止在光滑水平面上,箱底长L=1m,质量m=1Kg的小物体从箱子中央以v0=5m/s的速度开始向右运动,物体与箱底间的动摩擦因数=0.05,物体与箱壁发生完全弹性碰撞,问小物体可与箱壁发生多少次碰撞?当小物体在箱中刚达到相对静止时,箱子在水平面上的位移是多少?(练习)如图所示,在光滑水平面上静止放着一个质量为M的中空物体,其中间是一个半径为R的球形空间,内表面也是光滑的.另一个质量为m、半径为r的小球,从两球心等高的位置静止释放,试求:(1)小球到达最低点时,中空物体移动的距离;(2)小球到达最低点时,中空物体的速度.(3)判断:小球到右边的最大高度可不可以和初始位置等高?v0v0第6讲力矩与转动的关系角动量定理(2)一、质点的角动量定理①质点相对参考点的角动量:sinLmvr如图所示,质量为m的质点在xy平面内以速度v作匀速直线运动,求此质点相对于原点O的角动量L.②质点的角动量定理:21MtLL③质点角动量守恒定律:若作用于质点的合力对参考点O的合力矩M始终为零,则质点对该点的角动量保持不变,称为质点对参考点O的角动量守恒定律.在有心力场作用下运动的物体,因合力矩为零,故物体相对力心的角动量守恒.如果质点在有心力作用下运动,由于有心力对力心的力矩为零,因此质点对该力心的角动量就一定守恒.例如:行星在太阳引力下绕太阳的运动就是在有心力作用下的运动,日心即力心;地球卫星在地球引力作用下运动,地心即力心;电子在原子核静电力作用下运动,力心即原子核.在这些情况下,我们可得出结论:行星在绕太阳的运动中,对日心的角动量守恒(开普勒第二定律实际就是对有心力点的角动量守恒);人造地球卫星绕地球运行时,对地心的角动量守恒;电子绕原子核运动时,电子对原子核的角动量守恒.1、在光滑水平桌面上有一小孔O,一细绳穿过小孔,其一端系一小球放在桌面上,另一端用手拉住.设开始时令小球以速率v1绕孔O作半径为r1的匀速率圆周运动,如图所示.现在向下缓慢拉绳,直到小球作半径为r2的圆周运动时停止.试求此时小球的速率v2以及在此过程中绳子拉力T所做的功?2、如图所示,质量为m的两小球系于轻弹簧的两端,并置于光滑的水平面上,当弹簧处于自然状态时,长为a,其弹性系数为k.今两球同时受冲力作用,各获得与连线垂直的等值反向的初速度,若在以后运动过程中弹簧的最大长度b=2a,求两球的初速度v0?(练习)两个滑冰运动员,质量分别为MA=60Kg,MB=70Kg,它们的速率vA=5m/s,vB=10m/s,在相距1.3m的两平行线上相向而行,当两者最接近时,便拉起手来开始绕质心作圆周运动,并保持二人之间的距离1.3m不变.求:(1)二人拉手后,系统的角速度.(2)计算两个人拉手前后的动能是否相等,并说明理由.3、图中a为一固定放置的半径为R的均匀带电球体,O为其球心.己知取无限远处的电势为零时,球表面处的电势为U=1000V.在离球心O很远的O′点附近有一质子b,它以Ek=2000eV的动能沿与OO平行的方向射向a.以l表示b与OO线之间的垂直距离,要使质子b能够与带电球体a的表面相碰,试求l的最大值.把质子换成电子,再求l的最大值.五、刚体的角动量定理:21MtLL(当M=0时,L=恒量.)例:如图所示,一根L=0.4m的均匀木棒,质量M=1.0Kg,可绕水平轴O点在竖直面内转动,开始时棒自然铅直悬垂.现有一质量m=8g的子弹以v=200m/s的速度从A点水平射入棒内,A点离O点的距离为3L/4,棒的转动惯量J=ML2/3.求:(1)棒开始转动时的角速度.(2)棒的最大偏角.(3)若子弹射入的方向与棒的夹角=30,棒开始转动时的角速度.(1)对O点角动量守恒:LLmJLmv434343,J=ML2/3.得棒开始转动时的角速度)16931(4322mLMLmvL=8.87rad/s.(2)子弹射入棒内后系统机械能守恒,设棒的最大偏角为,22)43(2121)cos1(43)cos1(2LmJLmgLMg073.0232123cos2LmgMgLJLmgMgL,得棒的最大偏角=9412.(3)当子弹射入的方向与棒的夹角=30时,对O点角动量守恒:LLmJLmv4343sin43,=4.43rad/s.OABdvAvB角动量练习1.已知地球的质量为m,太阳的质量为M,地球与日心的距离为R,万有引力常量为G,则地球绕太阳作圆周运动的轨道角动量为()A.mGMRB.GMmRC.GMmRD.2GMmR2.如图所示,x轴沿水平方向,y轴竖直向下,在时刻将质量为m的质点由x=a处静止释放,让它自由下落,则在任意时刻t,质点所受相对原点o的力矩M=?该质点相对原点o的角动量L=?3.在光滑的水平面上,一根长L=2m的绳子,一端固定于O点,另一端系一质量为m=0.5Kg的物体,开始时,物体位于位置A,OA间距离d=0.5m,绳子处于松弛状态,现使物体以初速度vA=4m/s垂直于OA向右滑动,如图,设在以后的运动中物体

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功