微积分教学:从冰冷的美丽到火热的思考(4490字)作者:张奠宙(华东师范大学数学系上海200062)本文已被浏览788次(本文是作者在2005年11月7日“首届全国大学数学课程报告论坛”大会报告)数学成果通常具有三种不同的形态.第一,数学家构建数学思想、发现数学定理时的原始形态.其次是公开发表,写在论文里、教科书里的学术形态.最后,则是数学教师在课堂上向学生讲课的教育形态.国际数学教育委员会前主席、数学家弗赖登塔尔H.Freudenthal(1908-1990)有一句名言:“没有一种数学思想,以它被发现时的那个样子发表出来.一个问题被解决以后,相应地发展成一种形式化的技巧,结果使得火热的思考变成了冰冷的美丽.”(Freudenthal,Hans.1983.DidacticalPhenomenologyofMathematicalStructures.Dordrecht:Reidel.P.9)事实上,教科书里陈述的数学,往往是“冰冷的美丽”.因此,数学教师的责任在于把数学的学术形态转化为教育形态,使学生既能高效率地进行火热的思考,又能比较容易接受,理解隐藏在“冰冷美丽”背后的数学本质.一微积分在中国的一个世纪1859年,李善兰和伟列亚力翻译《代微积拾级》,微积分学传入中国.这时离开微积分的创立已经近200年.但是,这毕竟是中国文化现代化的重要标志,甚至具有一定的国际意义.在19世纪70年代,日本的数学家能够读到的微积分著作,依然只有李善兰的这一译本.日本使用的微积分名词,“微分”、“积分”,都从《代微积拾级》而来.李善兰是一个值得纪念的数学家.他是中国传统数学的最后一人,又是现代中国数学发端的代表人物.在中国出版的微积分著作中,应该提到他的名字.2005年是废除科举的100周年.当时的京师大学堂曾经开设微积分课程.用的就是《代微积拾级》,那是竖排本,不能使用拉丁字母和微积分通用符号,现在读来宛如天书“彳者,天之微分也.禾者,积分也禾彳天,言天微之积分也用今天的符号表示是这样的“中学为体、西学为用”,拒绝与国际接轨的做法,读者当然非常累.100年前,全国懂得微积分的不过百人在1919年的五四运动推动下,1920年代高等教育大发展.各地大学纷纷兴办数学系,微积分学成为理工科大学生的必修果.但是,那时的大学生数量很少,通常也只学初等微积分,高等微积分则依然十分神秘.英美留学归来一些数学教授,甚至还有人不能掌握ε-δ语言.真正的较大范围普及微积分,是新中国建立以后的事情.笔者于1951年进入大连工学院的应用数学系,一年级采用斯米尔诺夫编著的《数学教程》第一卷(当时还是讲义,尚未出版),开宗明义便学习极限的定义.这在解放前是不会有的.任课老师徐润炎先生,在黑板上写ε的读法是“一不是龙”,印象深刻.在“全面学习苏联”政策的影响下,苏联数学学派严谨、抽象、形式化的数学风格,使得中国数学教学逐渐成熟.中国的微积分教学的特征,至今依然是形式化的处理占主导地位进入21世纪,中国高等教育大发展,微积分教学进入新时代.今天的中学,也普遍教授微积分(上海除外).微积分“飞入寻常百姓家”,不再神秘,而改进微积分教学,也就成了当务之急.那么,我们应该怎样进行微积分教学?这使我们想起“阳春白雪”和“下里巴人”的故事.宋玉的《对楚王问》说:客有歌於郢中者,其始曰[下里巴人],国人属而和者数千人;其为[阳阿薤露],国人属而和者数百人;其为[阳春白雪],国中属而和者不过数十人;引商刻羽,杂以流征,国中属而和者不过数人而己.是其曲弥高,其和弥寡.如果说,李善兰时代的微积分是“引商刻羽”,五四以后还是阳春白雪,1950年代的微积分相当于“阳阿薤露”,那么今天的微积分已经是下里巴人了.让更多的人知道和掌握微积分的思想方法,成为当代数学教育的重要任务.二透过形式主义的美丽,领略微积分的无穷魅力多少年来,我们都是宣扬微积分的形式美丽.ε-δ语言的伟大,极限—连续—导数—积分的不变演绎顺序,推理—证明成为微积分教学的主旋律.形式主义的美丽,几乎掩盖了微积分本身的无穷魅力.尽管严密的形式主义表示十分重要,“阳春白雪”是永远不可缺少的.然而大多数人确实难以欣赏形式主义的美丽.今天,作为“下里巴人”的微积分,应该通过火热的思考充分展现微积分的魅力.在微积分教学中,我们总是按照定义—定理—推论—习题的逻辑顺序展开,学生只是被动地接受一个一个概念,却不知道为什么要这样做.优秀学生要到后来才恍然大悟,一般的学生只能囫囵吞枣,不知所云.最近看到一篇高等职业技术学院的微积分教学大纲,除了按极限、连续、导数、微分的逻辑顺序展开之外,特别是要讲左右极限.是否有必要涉及这样的枝节问题?数学本原问题是处理数学教学的灵魂,让职业学校的学生会用微积分观点看问题才是最主要的.没有思想的数学等于废了武功(郑绍远).剑招可以生疏,剑法不能忘记(李大潜).萧树铁先生在一份《高等数学》教学改革报告中要求:“讲推理,更要讲道理.”确实,微积分教学应该多讲道理,避免把充满人类智慧的微积分思想淹没在形式主义的海洋里.关肇直先生说过:“ε-δ推理曾被认为已经使微积分建立在严格的基础之上,其缺点在于丢失了牛顿、莱布尼兹那种微积分的生动的直观”[1].西南师大的陈重穆先生曾经呼吁“淡化形式,注重实质”[2].项武义先生则一再主张“返朴归真,平易近人”.姜伯驹先生说:“在某种意义上说,会用微积分比会证明更重要.”我想他们的意思都是一样的.微积分教学不能只让学生背诵一些求极限,求导数、求不定积分那样的符号运算,面对“冰冷”的微积分形式,使他们无法体会微积分思想的实质.尽可能恢复原始的火热思考,并以现代数学水平加以处理.例如,17世纪的一些伟大的数学家,曾经使用无穷小方法得到了许多重要的科学结论.由于逻辑上存在缺陷,经过分析严密化运动,在形式主义数学哲学的影响下,无穷小成为一种“错误”,离开了微积分课本.其实,这个无穷小量,就是“微分dx”.在积分学中,它是构造微元f(x)dx的基本的思考途径.然而,今天的微积分教学,已经把生动的“原始形态”当作陈旧的垃圾丢弃了.未免可惜.记得袁枚(清)在《随园诗话》里说过“学如箭镞,才如弓弩,识以领之,方能中鹄”.与知识、能力相比,数学思想,才是最重要的.我们不能把微积分淹没在形式主义的海洋里.我国数学教学受形式主义数学观的影响比较大,是历史条件所决定的.前已提及,1950年代苏联数学学派对中国数学影响非常深刻.数学分析课程的严谨程度远超过英美的教材.微积分课程也没有初等微积分和高等微积分的层次,语言也是在1950年代得到普及.流行的数学学科的特性是抽象性、严谨性,以及因为抽象而获得的广泛应用性.崇尚严密,当然是进步.但是,事情还有另一面:数学思想往往是朴素的,创新在开始时多半是不严密的.储存在人们头脑里的理解,通常又是生动而粗略的.长期以来,中国传统文化主张“治学严谨”,清代的考据学派和逻辑推理一脉相承.此外,数学哲理界不断地提到“三次数学危机”,关注数学基础的严密性.《自然辩证法》教材,反复强调19世纪以来的非欧几何、群论、四元数、分析严密化等理性思维的成就,对于影响人类进程的傅立叶方程、流体力学方程、马克斯韦尔电磁学方程的成果则较少提及.数学,似乎只能是公理化的、形式主义、演绎式的那付模样.总之,数学是一种文明,数学不只是事实的推砌;数学不限于技巧的运用;数学解题不等于创造;数学整体不等于数学杂技.数学考试只是把人已经做过的题目重做一遍而已.数学思想、观念的突破性创新,是对数学文明的主要推动力.2000年在国际数学教育大会上,日本数学会主席藤田宏教授认为,世界上出现过四个数学高峰,成为人类文明的火车头:●古希腊文明:欧氏《几何原本》为代表;●文艺复兴和17世纪的科学黄金时代;牛顿的微积分为代表;●19世纪与20世纪上半叶科学文明:非欧几何、希尔伯特、黎曼几何与相对论为代表;●信息时代文明:信息论、控制论、冯·诺依曼的计算机方案为代表.数学在20世纪下半叶发生巨大变化,其情势和牛顿时代相同,数学大量渗入各个学科,大刀阔斧地解决各种各样的问题,尽管开始时不大严格.试看1948年的数学地图.美国数学家仙农发表《通信的数学理论》,创立了信息论.维纳在这一年发表《控制论》,冯·诺依曼创造了电子计算机的方案.这三件数学工作,影响了人类的进程.这些工作,都不是形式主义数学所能完成的.由于各种原因,中国数学没有能够参与这一进程.我国的数学哲学深受形式主义的影响,以至数学观还停留在第三个时期.影响所及,数学教学,包括微积分教学,就会过分强调形式主义的演绎,而却忽视数学直观、数学思想、数学应用的培养.形式主义数学哲学观在中国占据着统治地位,一个明显的例子是关于布尔巴基学派的认识.如果说希尔伯特的形式主义是一种关于数学基础的哲学流派,那么布尔巴基学派则将形式主义数学观深入到整个数学.它形成于1930年代,兴盛于1960年代.他们认为只有用三种基本结构加以整理的《数学原本》,才是严谨的数学.但是,在信息技术革命的冲击下,1970年以后,年轻的数学家开始走出布尔巴基学派的光环,投身于更广泛的数学应用,产生了诸如分形、混沌、孤立子、小波、量子群、超弦、密码等许多新的学科.布尔巴基的《数学原本》终于在1970年停止出版新的卷次,基本结束.反观我国,吴文俊先生在1950年代曾在《数学通报》上介绍布尔巴基学派,并没有引起反响.却在1980年代,当该学派已经走下坡路的时刻,在国内推崇(包括自然辩证法这样的政治课)结构主义的数学观,这是和形式主义数学观一脉相承的.陈省身材先生说过:“我和布尔巴基学派的创始人都是好朋友,但是他们的工作不能解决我的问题.比如定理成立的充分必要条件(结构)就写不出来.”当然,数学表示需要形式化,严密的数学学术形态必然是形式化的.微积分的形式化表示,是19世纪许多数学家努力的结果,分析的严格化成为又一个数学高峰的标志.因此,对于以数学为主要工具的专业来说,形式化的学术形态是极端重要的.至于一般使用数学的理、工、农、经等专业,微积分思想和算法之间要取得适当的平衡,只能适度地强调形式化.对于把微积分作为文化背景、常识素养的人来说,形式化的算法就不大重要,关键是微积分的文化价值,以及科学意义.(未完待续)参考文献1.关肇直.数学推理导演个性与认识论众的实践标准.《数学学报》1976(1).2.陈重穆.淡化形式,注重实质.《数学教育学报》,1993(4).三、微积分教育形态的表现形式在微积分教学中,人们面对的是教科书中书写的学术形态,比较形式化的表达.那么如何用各种手段使它呈现为人们易于接受的教育形态呢?以下是一些具体的建议.平易近人,重视人的原始观念切线,瞬时速度,都是人们具有的原始观念.我们应该把它作为微积分的出发点,而不是导数的几何解释和力学解释.切线,人人都懂.于是,我们可以启发学生用切线的斜率变化来研究函数y=x的性质,这和中学里采用的方法完全不同,立即能使得学生关注微积分的奥妙.瞬时速度,其实也是人们的原始概念.当后面的快车赶上慢车的那一刹那,快车的速度比慢车的速度快,大家都明白.尽管我们没有定义过什么是瞬时速度,人人凭经验就可以大体理解.这是人的思维能动性的体现.正如我们没有严格定义过什么是图形的面积(严格的面积定义应该是某集合类上定义的集合函数,它满足:非负性、有限可加性、运动不变性、以及对边长为1的正方形取值为1),可大家都知道面积的存在,我们的任务是如何求面积.同样,瞬时速度既然存在,问题在于如何求.于是从引入平均速度出发,采取极限方法加以处理,微积分随之展开,非常自然.返朴归真,重视微积分发现时的原始形态一个突出的问题是,现代的微积分是否要运用17世纪发明微积分时的那种原始形态?无穷小量还有存在的必要吗?笔者认为仍然需要介绍.因为那是人类智慧的结晶,闪烁着天才的光芒.16—17世纪数学家们在发现微积分的时候,确实火热的思考.请看费马当年怎样运用无穷小讨论以下的极值问题:“周长一定的矩形以正方形面积最大”.证明设周长为A,截取一段B.现取无穷小量E.如果A-B,B是解,那么