经济时间序列的季节调整、分解和平滑方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

经济时间序列的季节调整、分解与平滑本章主要介绍经济时间序列的分解和平滑方法。时间序列分解方法包括季节调整和趋势分解,指数平滑是目前比较常用的时间序列平滑方法。经济指标的月度或季度时间序列包含4种变动要素:长期趋势要素T、循环要素C、季节变动要素S和不规则要素I。长期趋势要素(T):代表经济时间序列长期的趋势特性。循环要素(C):是以数年为周期的一种周期性变动。季节要素(S):是每年重复出现的循环变动,以12个月或4个季度为周期的周期性影响,由温度、降雨、每年中的假期和政策等因素引起。季节要素和循环要素的区别在于季节变动是固定间距(如季或月)中的自我循环,而循环要素是从一个周期变动到另一个周期,间距比较长且不固定的一种周期性波动。不规则要素(I):又称随机因子、残余变动或噪声,其变动无规则可循,这类因素是由偶然发生的事件引起的,如罢工、意外事故、地震、水灾、恶劣气候、战争、法令更改和预测误差等。经济时间序列的分解511.471631.482751.493871.494991.50198119831985198719891991199319951997单位:亿元606.051505.592405.123304.664204.20198119831985198719891991199319951997单位:亿元0.760.860.961.061.161981198319851987198919911993199519970.890.951.001.061.11198119831985198719891991199319951997图1我国工业总产值的时间序列Y图形图2工业总产值的趋势·循环要素TC图形图3工业总产值的季节变动要素S图形图4工业总产值的不规则要素I图形季节调整的概念季节性变动的发生,不仅是由于气候的直接影响,而且社会制度及风俗习惯也会引起季节变动。经济统计中的月度和季度数据或大或小都含有季节变动因素,以月份或季度作为时间观测单位的经济时间序列通常具有一年一度的周期性变化,这种周期变化是由于季节因素的影响造成的,在经济分析中称为季节性波动。经济时间序列的季节性波动是非常显著的,它往往遮盖或混淆经济发展中其他客观变化规律,以致给经济增长速度和宏观经济形势的分析造成困难和麻烦。因此,在进行经济增长分析时,必须去掉季节波动的影响,将季节要素从原序列中剔除,这就是所谓的“季节调整”(SeasonalAdjustment)。2.2.1X-11季节调整方法1954年美国商务部国势普查局(BureauofCensus,Depart-mentofCommerce)在美国全国经济研究局(NBER)战前研究的移动平均比法(TheRatio-MovingAverageMethod)的基础上,开发了关于季节调整的最初的电子计算机程序,开始大规模地对经济时间序列进行季节调整。此后,季节调整方法不断改进,每次改进都以X再加上序号表示。1960年,发表了X-3方法,X-3方法和以前的程序相比,特异项的代替方法和季节要素的计算方法略有不同。1961年,国势普查局又发表了X-10方法。X-10方法考虑到了根据不规则变动和季节变动的相对大小来选择计算季节要素的移动平均项数。1965年10月发表了X-11方法,这一方法历经几次演变,已成为一种相当精细、典型的季节调整方法2.2经济时间序列的季节调整方法X-11方法是基于移动平均法的季节调整方法。它的特征在于除了能适应各种经济指标的性质,根据各种季节调整的目的,选择计算方式外,在不作选择的情况下,也能根据事先编入的统计基准,按数据的特征自动选择计算方式。在计算过程中可根据数据中的随机因素大小,采用不同长度的移动平均,随机因素越大,移动平均长度越大。X-11方法是通过几次迭代来进行分解的,每一次对组成因子的估算都进一步精化。正因为如此,X-11方法受到很高的评价,已为欧美、日本等国的官方和民间企业、国际机构(IMF)等采用,成为目前普遍使用的季节调整方法。2.2.2X12季节调整方法美国商务部国势普查局的X12季节调整程序是在X11方法的基础上发展而来的,包括X11季节调整方法的全部功能,并对X11方法进行了以下3方面的重要改进:(1)扩展了贸易日和节假日影响的调节功能,增加了季节、趋势循环和不规则要素分解模型的选择功能;(2)新的季节调整结果稳定性诊断功能;(3)增加X12-ARIMA模型的建模和模型选择功能。X12季节调整方法的核心算法是扩展的X11季节调整程序。共包括4种季节调整的分解形式:乘法、加法、伪加法和对数加法模型。注意采用乘法、伪加法和对数加法模型进行季节调整时,时间序列中不允许有零和负数。①加法模型(2.2.1)②乘法模型:(2.2.2)③对数加法模型:(2.2.3)④伪加法模型:(2.2.4)1.季节调整的模型选择ttttISTCYttttISTCYttttISTCYlnlnlnln)1(ttttISTCYX12调整的核心算法令Yt表示一个无奇异值的月度时间序列,通过预测和回推来扩展序列使得尾端不需要对季节调整公式进行修改,把Yt分解为趋势循环项,季节项和不规则要素。现在以加法模型为例介绍X12季节调整的核心算法1.季节调整的初时估计通过中心化12项移动平均计算趋势循环要素的初始估计:tTC65561112212ttttttYYYYYTC计算SI的初始估计:通过3×3移动平均计算季节因子S的初始估计消除季节因子中的残余趋势季节调整结果的初始估计11tttSIYTC11111^2412122412329ttttttSSISISISISI^^^^11116556^112224ttttttSISISISISSI11tttTCIYS计算暂定的趋势循环要素和最终的季节因子利用Henderson移动平均公式计算暂定的趋势循环要素:计算暂定的SI项:通过3×5项移动平均计算暂定的季节因子计算最终的季节因子2211HHtjtjjHTChTCI22tttSIYTC22222222^3624121224362333315ttttttttSISISISISISISIS^^^^22226556^212224ttttttSISISISISSI季节调整的第二次估计结果计算最终的趋势循环要素和最终的不规则要素利用Henderson公式计算最终的趋势循环要素计算最终的不规则要素22tttTCIYS3212HHtjtjjHTChTCI323tttITCITC例2.1利用X12加法模型进行季节调整图2.1a社会消费品零售总额原序列图2.1b社会消费品零售总额的TC序列图2.1c社会消费品零售总额I序列图2.1d社会消费品零售总额的S序列由每天经济活动的总和组成的月度时间序列受该月各周的影响,这种影响称为贸易日影响(或周工作日影响)。例如,对于零售业在每周的星期一至星期五的销售额比该周的星期六、星期日要少得多。因此,在某月如果多出的星期天数是一周的前五天,那么该月份销售额将较低;如果多出的星期天数是一周的星期六、星期日,那么该月份销售额将较高。又如,在流量序列中平均每天的影响将产生“月长度”影响。因为在每年中二月份的长度是不相同的,所以这种影响不可能完全被季节因素承受。二月份残留的影响被称为润年影响。3.贸易日和节假日影响(1)贸易日影响Young(1965)讨论了浮动贸易日的影响,ClevelandandGrupe(1983)讨论了固定贸易日的影响。贸易日影响和季节影响一样使得比较各月的序列值变得困难,而且不利于研究序列间的相互影响。由于这个原因,当贸易日影响的估计在统计上显著时,通常在季节调整之前先把贸易日的影响从序列中剔除。在调整的内容中,形成了又一个分解要素:贸易日要素D。在X12季节调整中,假设贸易日影响要素包含在不规则要素中,即不规则要素的形式是ID,假设已从原序列Y中分解出ID。然后用回归分析求出星期一,星期二,……,星期日的相应权重,从而可以将ID分解为真正的不规则要素I和贸易日要素D。假设一个星期中星期i的影响记做ai,i=1,2,…,7.dit表示第t月中包含星期i的个数,该月贸易日的影响可以表示为:贸易日的影响可以分解成两部分:一部分之和该月的天数有关,另一部分之和星期i的影响有关。第t月与该月的天数有关的贸易日的影响可以使用表示,其中:对于乘法模型,同时除以可以消除贸易日的影响77__1177_11,,t7iittiitiiiititiadaNaadaaNd表示第月的天数*taN4*12114ttkkNN*taN77***111,1tiiiititiiitttNaddNNNa建立回归模型,ID表示包含贸易日影响的不规则要素的预估计:使用OLS估计参数,求出ID的估计值,而残差序列是真正的不规则要素I的估计值。对于加法模型可有:7*11itittitIDdN^ID77__**0117*t0t1IDttiitttiitiittiitiaNNaadNNdNNd建立回归方程:=美国的圣诞节、复活节及感恩节等节假日对经济时间序列也会产生影响。例如,圣诞节的影响可以增加当周或前一周商品的零售额,或者是降低特定工厂在圣诞节前几天的产量。在X12方法中,贸易日和节假日影响可以从不规则要素中同时估计得到。在X12方法中,可以对不规则要素建立ARIMAX模型,包括贸易日和节假日影响的回归变量,而且还可以指明奇异值的影响,并在估计其他回归影响的同时消除它们。注意EViews中的节假日调整只针对美国,不能应用于其他国家。(2)节假日影响的调整X12方法是基于移动平均法的季节调整方法。它的一个主要缺点是在进行季节调整时,需要在原序列的两端补欠项,如果补欠项的方法不当,就会造成信息损失。X12-ARIMA方法是由X12方法和时间序列模型组合而成的季节调整方法。通过用ARIMA模型(autoregressiveintegratedmovingAverage)延长原序列,弥补了移动平均法末端项补欠值的问题。建立ARIMA(p,d,q)模型,需要确定模型的参数,包括单整阶数d;自回归模型(AR)的延迟阶数p;动平均模型(MA)的延迟阶数q。也可以在模型中指定一些外生回归因子,建立ARIMAX模型。对于时间序列中的一些确定性的影响(如节假日和贸易日影响),应在季节调整之前去掉。4.X12-ARIMA模型外部影响调整包括附加的外部冲击(addtiveoutlier,AO)和水平变换(levelshift,LS)。附加的外部冲击(AO)调整是指对序列中存在的奇异点数据进行调整,水平变换(LS)是指对水平上发生突然变化的序列的处理。5.外部影响调整04000080000120000160000200000240000280000197619781980198219841986图2.2经济时间序列水平变换示意图通过对ARIMAX模型中的回归方程添加外部冲击和水平变换回归变量,可以处理奇异点数据和在水平上发生突然变化的序列。在对序列进行预调整的同时得到外部影响调整是X12-ARIMA模型的特殊能力。在奇异点t0的外部冲击变量:(2.2.26)在水平位移点t0的水平变换变量:(2.2.27)00)(010ttttAOtt00)(010ttttLSttTRAMO(TimeSeriesRegressionwithARI

1 / 65
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功