2018届数学高考一轮复习立体几何:(二)空间中直线、平面间的关系及其证明知识梳理·题型剖析1【考点1:空间中点、线、面的基本关系】1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点在这个平面内(即直线在平面内).公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.2.公理4平行于同一条直线的两条直线互相平行.3.定理空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.4.直线与直线的位置关系(1)位置关系的分类共面直线平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫作异面直线a,b所成的角(或夹角).②范围:0,π2.5.直线与平面的位置关系有平行、相交、在平面内三种情况.6.平面与平面的位置关系有平行、相交两种情况.题型1:平面基本性质及其应用【典型例题】[例1](1)在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线解析:选A选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.(2)下列命题正确的是.①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.解析经过不共线的三点可以确定一个平面,∴①不正确;两条平行线可以确定一个平面,∴②正确;两两相交的三条直线可以确定一个或三个平面,∴③正确;命题④中没有说清三个点是否共线,∴④不正确.(3)以下四个命题中正确的是.①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.解析①假设其中有三点共线,则该直线和直线外的另一点确定一个平面.这与四点不共面矛盾,故其中任意三点不共线,所以①正确.②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;③不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.2018届数学高考一轮复习立体几何:(二)空间中直线、平面间的关系及其证明知识梳理·题型剖析2[例2]如图所示,正方体ABCD—A1B1C1D1中,E、F分别是AB和AA1的中点.求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点.证明(1)连接EF,CD1,A1B.∵E、F分别是AB、AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E、C、D1、F四点共面.(2)∵EF∥CD1,EFCD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE、D1F、DA三线共点.【变式训练】1.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵ABγ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.2.平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点能确定________个平面.答案1或4解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.3.如图,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,过E、F、G的平面交AD于点H.(1)求AH∶HD;(2)求证:EH、FG、BD三线共点.(1)解∵AEEB=CFFB=2,∴EF∥AC,∴EF∥平面ACD,而EF平面EFGH,平面EFGH∩平面ACD=GH,∴EF∥GH,∴AC∥GH.∴AHHD=CGGD=3.∴AH∶HD=3∶1.2018届数学高考一轮复习立体几何:(二)空间中直线、平面间的关系及其证明知识梳理·题型剖析3(2)证明∵EF∥GH,且EFAC=13,GHAC=14,∴EF≠GH,∴EFGH为梯形.令EH∩FG=P,则P∈EH,而EH平面ABD,又P∈FG,FG平面BCD,平面ABD∩平面BCD=BD,∴P∈BD.∴EH、FG、BD三线共点.题型2:空间中直线关系的判断【典型例题】[例1](1)(教材习题改编)给出命题:①若两条直线和第三条直线所成的角相等,则这两条直线互相平行.②若两条直线都与第三条直线垂直,则这两条直线互相平行.③若两条直线都与第三条直线平行,则这两条直线互相平行.其中不正确的命题的个数为________.答案:2(2)(2015·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(只填序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①(3)(2014·广东)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:选D构造如图所示的正方体ABCDA1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A,B,C,选D.[例2](1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行答案D解析连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)如图所示,正方体ABCD—A1B1C1D1中,M、N分别是A1B1、B1C1的中点.问:①AM和CN是否是异面直线?说明理由;②D1B和CC1是否是异面直线?说明理由.2018届数学高考一轮复习立体几何:(二)空间中直线、平面间的关系及其证明知识梳理·题型剖析4解(1)不是异面直线.理由如下:连接MN、A1C1、AC.∵M、N分别是A1B1、B1C1的中点,∴MN∥A1C1.又∵A1A綊C1C,∴A1ACC1为平行四边形,∴A1C1∥AC,∴MN∥AC,∴A、M、N、C在同一平面内,故AM和CN不是异面直线.(2)是异面直线.证明如下:∵ABCD—A1B1C1D1是正方体,∴B、C、C1、D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D1B平面α,CC1平面α,∴D1、B、C、C1∈α,与ABCD—A1B1C1D1是正方体矛盾.∴假设不成立,即D1B与CC1是异面直线.【变式训练】1.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案C解析由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.2.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、异面直线都有可能答案D解析当a,b,c共面时,a∥c;当a,b,c不共面时,a与c可能异面也可能相交.3.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b答案:③④4.已知l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面答案B解析当l1⊥l2,l2⊥l3时,l1与l3也可能相交或异面,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.