AppliedPhysics应用物理,2019,9(4),182-196PublishedOnlineApril2019inHans.://doi.org/10.12677/app.2019.94023文章引用:陈盛文,高磊.起动负浮力射流中涡环形成与演化的实验研究[J].应用物理,2019,9(4):182-196.DOI:10.12677/app.2019.94023OntheVortexRingFormationandEvolutioninNegativelyBuoyantJetShengwenChen,LeiGao*SchoolofAeronauticsandAstronautics,SichuanUniversity,ChengduSichuanReceived:Apr.2nd,2019;accepted:Apr.17th,2019;published:Apr.24th,2019AbstractInthispaper,theformationandevolutionofnegativebuoyancyvortexringsarestudiedexperi-mentally.Forsmallstrokeratio(L/D=2,3)cases,theevolutionofthebuoyantvortexringinthenearfieldisinvestigated.ItisfoundthatasRichardsonnumberRiincreases,thegrowthratesofthevortexringradius,aswellasitstranslationalvelocityarereduced.Thekineticparametersofthebuoyantvortexring,i.e.,thehydrodynamicimpulseandcirculation,arealsodiminishedbyRi.Theimpulseandvelocityofthebuoyancyvortexringareobtainedandcomparedwiththoseofthethincorevortexringmodel.Itisfoundthatthebuoyantvortexringconformstothecharacteris-ticsofthincorevortexringmodel.KeywordsNegativelyBuoyantJet,VortexRing,RichardsonNumber起动负浮力射流中涡环形成与演化的实验研究陈盛文,高磊*四川大学空天科学与工程学院,四川成都收稿日期:2019年4月2日;录用日期:2019年4月17日;发布日期:2019年4月24日摘要本文对负浮力涡环的形成与演化的动力学特性进行了实验研究。对小冲程比(L/D=2、3)情况下产生的浮力涡环的近场的演化进行了分析,发现随着理查德森数Ri增大,涡环的生长半径变大,涡环的运动速度减小,相应的动力学参数(水力冲量、环量等)也变小。并求得浮力涡环的冲量与速度,与细核涡环理论模型公式求得的冲量与速度对比,发现浮力涡环是符合细核涡环特性。*通讯作者。陈盛文,高磊DOI:10.12677/app.2019.94023183应用物理关键词负浮力射流,涡环,理查德森数Copyright©2019byauthor(s)andHansPublishersInc.ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY).引言涡环作为由涡管封闭而形成的自由涡量分布组成的最基本涡结构,自19世纪50年代被Helmholtz发现,就成为了流体力学研究的热点[1]。对涡环相关特性的研究是人们研究涡动力学基本原理的主要手段。Maxworth[2][3]通过活塞装置产生涡环并研究了其生成与演化的过程。Didden[4]建立了Slug模型描述了射流产生的涡环的物理特征。Shariff等[5]和Lim等[6]对之前的在静止、非分层环境中涡环的动力学特征进行了总结。Gharib等[7]通过对活塞–圆管装置产生的轴对称涡环的形成过程进行研究,发现了涡环生成过程中的夹止现象,即当冲程比L/D(L为活塞运动距离,D为管口直径,也就是形成时间(*ptUtD=)达到一个临界值4F≈时,涡环开始逐渐与后续射流主干分离,即发生夹止(Pinch-off),之后从出口分离的剪切层涡量不再会被涡环吸收,涡环的生长达到最大状态。Gharib等人[7]认为起动射流中涡环生长的最大状态对应着某种流动属性的最优化。之后,Krueger和Gharib[8]证实了在其对应的时刻,射流的时均推力达到最大值。随着光学测速技术的发展,对涡环结构,特别是涡核的研究更加细致与准确。Weigand等[9]发现层流涡环内涡核的涡量符合高斯分布。Norbury[10]根据无量纲的涡核半径对涡环进行了分类。Fraenkel[11]在1970年对细核涡环建立了运动力学模型。Saffman[12]、Sullivan[13]等对细核涡环的模型进行了修正与完善。浮力涡环作为一种环内流体与环境流体密度不同的涡环,其生成与演化过程受到浮力影响的研究结果还存在争议。早前对浮力涡环的研究主要集中在其远流场的流动特征。Turner[14]在1957年研究了正浮力涡环在其形成后期的动力学特性,并建立了湍流浮力涡环的理论模型。提出浮力在涡环向上运动的过程中起到的主要作用是保持涡环结构稳定、增加涡环半径的增长率和减少涡环的行进速度。之后,Turner[15]建立了起动羽流的理论模型。近年来,受到Gharib等人[7]在起动射流中发现涡环夹止现象的启发,人们对起动浮力射流在初始阶段以涡环为主要流动结构的近流场动力学特性进行了一些较为系统的研究[16]。Pottebaum和Gharib[17]首次在有加热底部圆盘产生的起动羽流中观察到了浮力涡环的夹止现象。该流动可以看作是起动浮力射流在出口处动量通量M0减少为零的极限情况,其所有动力学变量(环量、动量和动能)都由浮力产生。该研究表明了起动浮力射流中涡环夹止现象的存在。Bond和Johari[18]通过在环境流场中向下释放有限体积的重流体,研究了起动浮力射流在近流场的动力学特性,发现浮力产生的斜压性改变了涡环的结构和发展。Marugán-Cruz[19]等通过实验研究了负浮力对射流的影响,发现当雷诺数足够大,而且密度与粘性的比接近一样,流体的特征就只与密度傅汝德数相关,其中Ri代表理查德森数,是浮力射流中浮力与初始动量相关的参数。其表达式为:–12pFrRiRiDgUρρ∆==(1)OpenAccess陈盛文,高磊DOI:10.12677/app.2019.94023184应用物理公式中D为圆管直径,Up为活塞速度,0ρρρ∆=−,ρ为外部流场密度,0ρ为管内流体密度,g为重力加速度。当1Fr时,随着Fr的增加,形成数也随着增加,最后达到均质射流的值3~4左右。也就是说相对于均质射流,负浮力射流的形成数减少了。与之相对应的Wang[20]等通过对正浮力射流的数值模拟研究,发现正的浮力增加了其形成数。Gao[21]等通过数值模拟,研究了0.060.06Ri−的浮力射流,并确定了形成数F与分离数S随Ri变化的规律。其中,分离数S是当尾流与前导涡环完全分离时的无量纲时间。在理论研究上,Shusser与Gharib[22]对起动浮力羽流中涡环演化建立了积分模型,对其浮力涡环的形成数进行了预测。本实验目的为研究小冲程比(L/D=2、3)条件下,负浮力射流产生的涡环在近流场的演化与发展规律,并揭示负浮力涡环生成与演化受起动射流理查德森数影响的物理机理。2.实验部分该实验装置由水箱,铝合金架,活塞–圆管装置,撞针,伺服电机,相机,激光发生器组成,如图1所示。其中水箱由有机玻璃制成,其尺寸为0.8m×0.8m×1.2m,下方开口方便排水,并被置于铝合金架上固定,水箱中盛放环境流体,用于浮力涡环的生长与演化。Figure1.Startingbuoyancyjetdevice图1.起动浮力射流装置整个涡环的发生装置由活塞–圆管装置,撞针,两个伺服电机,倍福PLC控制器,丝杆以及钢板框架组成。其中,圆管直径D0=200mm,活塞最大运动长度Lmax=220mm,两个伺服电机位于整套装置的上方与两根丝杆连接,两根丝杆分别套有活塞与撞针。PLC控制器与电机、计算机相连,负责控制器将控制电机的运动,从而实现对活塞与撞针的控制。实验开始后,撞针向下快速运动刺破薄膜,然后迅速向上运动到离活塞面2mm处,然后同活塞一起向下运动。相机与激光发生器作为PIV技术中的主要设备,发生器用于照亮流场,相机用于拍摄流场照片。在该实验中使用的相机型号为IMPERX-B1620M,图像记录最大为47帧/s,每次记录图像500帧,图像分辨率为1600×1200像素。在PIV数据处理中,选取的最小处理窗口为32×32像素,步长为16像素。管内流体为酒精溶液,实验开始前管内外都要布上适量示踪粒子。通过输入控制程序的函数控制伺服电机,从而驱使活塞运动。该控制装置精度高,瞬时达到设定速度并一直以匀速运动,最后也在极短时间内停止,故活塞的运动可以看做匀速运动。表1列出了射流的不同条件,其中H1、H2是内外密度相同的均质射流,N1-N8是负浮力射流。该实验中,所有实验情况下Re1000≈。陈盛文,高磊DOI:10.12677/app.2019.94023185应用物理Table1.Experimentparameters表1.实验参数caseD(m)U0(m/s)L(m)ρ(kg/m3)ρ0(kg/m3)Δρ/ρ0(%)RiH10.020.060.04998.1998.100H20.020.060.06998.1998.100N10.020.060.04996.9997.8−0.09−0.050N20.020.060.06996.7997.6−0.09−0.050N30.020.060.04996.4998.1−0.17−0.098N40.020.060.06996.0997.8−0.18−0.102N50.020.060.04994.0997.7−0.37−0.201N60.020.060.06993.9997.5−0.36−0.199N70.020.060.04992.0997.6−0.56−0.304N80.020.060.06992.0997.5−0.55−0.2983.结果与分析在第一部分对两组均质射流,八组浮力射流通过实验测得的数据得到的涡量场,速度场选取了一定的时刻(***1.05,4.05,7.8ttt===)展示。并对****3.3,4.05,4.8,5.55tttt====四个时刻,在涡核所处X/D位置的涡量分布进行了对比。在第二部分,展示了涡环半径以及涡核位置的变化情况。第三部分则对涡环的动力学物理量(环量、冲量、速度),进行了对比与分析。3.1.涡量场与速度场在下列图2中图2(a)~(c)、图2(d)~(f)分别代表L/D为2和3的均质射流在不同时刻的涡量等值线与速度矢量图。对比以后,可以发现其生长机制几乎相同,都是在活塞开始运动后,流体被推出圆管,在管口处形成分离剪切层进而卷起形成涡环,在一定时间涡环离开管口,开始向后运动如图2(a)、图2(d)所示。活塞继续推动管内流体进入涡环中,活塞停止推动后,涡环继续向前运动,如图2(b)~(f)所示。此时,我们还可以观察到管口处出现了与涡环相反的涡量,这就是制止涡环,是由于活塞的突然停止产生的。由于活塞多推动了20mm,在冲程比为3的均质射流,*4.05t=时刻,仍有尾流,可以通过该时刻的速度矢量图观察到