核能的利用引言人类的一切活动都离不开能源,能源是发展工业、农业、国防、科学技术和提高人民生活水平的重要基础。1939年原子核裂变的发现,开辟了核能利用的新时代.。特别是在能源结构从石油转入非油能源的新时期里,核能被认为是解决世界能源短缺的一种重要途径,可开发的核燃料资源所提供的裂变能、聚变能,可供人类大规模长时期的利用。核能具有独特的优越性开发和利用新型的核能源是人类社会生存发展的必然趋势。近年来,大力发展核电是许多国家在研究本国能源现状和前景之后,所采取的一种比较普遍的基本政策核能发现核能的发现凝聚了众多科学家的智慧和汗水。1932年,英国物理学家查德威克发现了中子,为人类提供了打开核能利用大门的一把钥匙,1939年,费米利用中子轰击铀发现反应能产生中等重量的元素,居里夫人的女儿伊伦·居里进行了类似的研究,但得到了不同的反应产物。德国科学家哈恩重复他们的实验证实中子轰击铀能产生重量为铀一半的元素,并确定它是钡,他的进一步工作证实了伊伦·居里实验的产物是镧。接着,流亡瑞典的奥地利女科学家迈特纳提出了铀核裂变的概念,并指出裂变能放出能量。为了能持续地放出核能,匈牙利物理学家西拉德最先考虑了链式反应发生的可能性。1939年约里奥·居里夫妇等人,通过实验发现一个铀核(U-235)裂变会释放出2—3个中子,用实验证实了链式反应的可能性。1941年12月到1942年12月,费米领导一批物理学家在芝加哥大学斯塔克运动场的西看台下成功地建造了世界上第一座原子核反应堆发出了200W的电,解决了受控自持链式反应的众多技术问题,这标志着核能和平利用时代的到来。核能原理核能(或称原子能)是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc²,其中E=能量,m=质量,c=光速常量。核能通过三种核反应之一释放:1、核裂变,打开原子核的结合力。2、核聚变,原子的粒子熔合在一起。3、核衰变,自然的慢得多的裂变形式。核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子。若这些中子除去消耗,至少有一个中子能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应。实现链式反应是核能发电的前提。核能的发展第一代核电站。核电站的开发与建设开始于20世纪50年代。1954年前苏联建成发电功率为5兆瓦的实验性核电站;1957年,美国建成发电功率为9万千瓦的ShipPingPort原型核电站。这些成就证明了利用核能发电的技术可行性。国际上把上述实验性的原型核电机组成为第一代核电机组。第二代核电站。20世纪60年代后期,在实验性和原型核电机组基础上,陆续建成发电功率30万千瓦的压水堆、沸水堆、重水堆、石墨水冷堆等核电机组,他们在进一步证明核能发电技术可行性的同时,使核电的经济性也得以证明。目前,世界上商业运行的400多座核电机组绝大部分是在这一时期建成的,习惯上称为第二代核电机组。第三代核电站。20世纪90年代,为了消除三里岛和切尔诺贝利核电站事故的负面影响,世纪核电业界集中力量对严重事故的预防和缓解进行了研究和攻关,美国和欧洲先后出台了《先进轻水堆用户要求文件》,即URD文件和《欧洲用户对轻水堆核电站的要求》,即EUR文件,进一步明确了预防与缓解严重事故,提高安全可靠性等方面的要求。国际上通常把满足URD文件或EUR文件的核电机组称为第三代核电机组。对第三代核电机组要求是能在2010年前进行商用建造。第四代核电站。2000年1月,在美国能源部的倡议下,美国、英国、瑞士、南非、日本、法国、加拿大、巴西、韩国和阿根廷共10个有意发展核能的国家,联合组成了“第四代国际核能论坛”,与2001年7月签署了合约,约定共同合作研究开发第四代核能技术。核能在农业方面的应用将农学与核科学结合起来的新兴学科称核农学,其目的在于为农业科学研究和农业生产提供新的手段,促进农业的现代化。核技术在农业中的应用是1955年第一届国际原子能和平利用会议以后,逐渐在各个国家发展起来的。中国于1956年开始制订这门学科的发展规划。1957年在中国农业科学院建立了第一个原子能农业利用研究室,后发展为研究所。至今全国各省、市、自治区和少数地区的农业科研单位已广泛开展这方面的研究,并取得了显著成绩。主要包括下列内容:辐射育种即利用γ、X、β射线或中子流等高能量的电离辐射处理植物的器官,使细胞内产生不同类型的电离作用,进而诱发产生可遗传的突变,从中选择和培育符合生产需要的新品种。辐射育种与常规育种比较,其主要特点为:①变异率高。一般可达1/30,比自然突变高100倍以上,甚至可达1000倍。②变异范围广。诱变产生的变异类型常超出一般,甚至会产生自然界中未曾出现的或罕见的新类型。其中有的具有利用价值,已为作物提早成熟、植株矮化、增强抗病性、提高蛋白质、糖分、淀粉的含量等创造了丰富的育种原始材料和基因资源。③变异稳定快。由辐射处理产生的变异,一般经3代即可基本稳定,而有性杂交大多要经4~6代才能稳定。辐射处理的方法分外照射和内照射两种。外照射是指被照射的种子或植株所受的辐射来自外部某一辐射源;方法简便、安全,可以大量处理。内照射是将辐射源引入被照射种子或植物某器官内部,常见的有放射性同位素浸种、放射性同位素注射(在茎、枝条、芽或子房部位施用放射性同位素肥料供植物吸收)以及向植物供给14CO2、使之通过光合作用同化到代谢产物中去诱发突变等。辐射处理的材料包括种子、花粉、子房、营养器官和整体植株。此外,还可照射愈伤组织,用于辐射诱变与组织培养相结合的研究领域(见诱变育种)。辐射不育治虫原理是通过对防治对象(雄虫)某个虫态的辐照处理,使其生殖细胞的染色体发生断裂、易位,造成不对称组合,导致显性致死;而受照射的体细胞基本上不受损伤。由于辐照后的昆虫仍能保持正常的生命活动和寻找配偶,将经过辐照处理的不育昆虫在虫害地区连续大量释放,就可使其同正常昆虫进行交配而不产生后代。经过几代之后,自然种群因不育而数量减少,以致有可能完全消灭这一地区的虫种。此法不会造成环境污染,对人、畜和天敌无害,防效持久,专一性强,对消灭螟虫、棉铃虫等钻进植物体内隐蔽、药剂和天敌很难触及的害虫效果尤佳。γ射线、X射线、β射线及中子束都可用于照射,而以60Co放射源的γ射线最简便有效。但用高剂量辐照造成的不育昆虫因无法和自然种群争夺配偶,因而影响灭虫效果。近年来,改用亚不育或半不育剂量处理的害虫,可提高受照射昆虫竞争配偶的能力,通过遗传将辐射导致的细胞染色体易位变化传递给下一代,使95%以上的下一代害虫丧失生育力。如玉米螟雄虫经过这样的处理后,其子代可比亲代更为不育。此法虽不能在当代根除害虫,但可减少不育虫的释放量,使防治成本降低。因而在成虫期不危害作物的条件下释放半不育(其子代完全不育)雄虫,一般可比释放完全不育的雄虫取得更好的效果。世界上约有1/3的国家对上百种昆虫从事辐射不育的研究,已知有30多种害虫进入了中间试验或应用阶段。螺旋蝇、地中海果蝇、红铃虫等一些重要害虫用不育方法防治,都取得了重大成果。辐射食品保藏即通过辐照抑制食用产品器官的新陈代谢和生长发育,同时杀灭害虫和致病微生物,以改进食品品质,减少贮运损失,延长贮存期和货架陈放期。用于这一目的的辐照源一般包括60Co、137Cs的γ射线源、X光机发出的X射线、电子加速器发出的小于或等于10MEV的电子射线等。辐照前处理是辐照食品的重要环节,经常采用的手段包括:严格控制食品收获、加工的条件,以降低害虫和微生物对食品的污染基数;通过适当加热,以钝化生物酶的活性;通过低温暂存和绝氧控制食品代谢的速度,以防止氧化;以及添加抗氧剂、保水剂、辐射增效剂等。辐照剂量按辐照的不同目的可分为3类:低剂量用于抑制产品器官的代谢和杀虫,剂量范围在0.1兆拉德以内;中剂量用于针对性、选择性的杀虫、灭菌和改进品质,剂量范围在0.1~1兆拉德;高剂量用于彻底杀虫、灭菌和长期保存食品,剂量范围在1~6兆拉德。多数情况下,剂量率在10~10000千拉德/小时范围以内时,辐照剂量率变化对食品辐照效果的影响不显著。长期的生物试验结果证明,辐照食品是卫生和安全的,不会使食品产生感生放射性;射线杀虫、灭菌还能减轻甚至消除病原体及其产生的毒素,而不会产生病原体及其毒素。人食用辐射食品后无不良反应。放射免疫分析是一项微量分析技术。1959年由美国科学家耶洛与贝松提出。在畜牧、兽医上现已成为家畜生理和兽医临床研究的重要手段,常用以进行激素检测和细菌、病毒、抗体、维生素、药物、酶等微量物质的定量测定;在植物病理研究等方面也有应用。其基本原理是用放射性同位素标记的抗原与限量特异抗体发生反应,形成标记抗原-抗体复合物。这是一种可逆反应。在抗体浓度较低时,此复合物是可溶的。如向此反应系统中加入性质相同的非标记抗原,则将以同样方式与抗体发生反应,即在数量上与标记抗原发生竞争。反应系统中非标记抗原的量愈多,同标记抗原相结合的抗体就愈少。放射免疫分析就是利用这种竞争性反应。实验中将一系列不同浓度的非标记抗原加至含有一定量特异抗体和标记抗原的混合液中,反应后,用快速分离技术使结合的标记抗原和未结合的标记抗原分离,进行放射性测定,即可绘制出剂量-反应标准曲线。按同样程序对待测样本进行测量,将所得结果与标准曲线对照,便可求得样本中抗原的含量。此法的优点是特异性强,灵敏度、准确度和精确度高,样本用量少,操作程序便于标准化,放射性物质不引入体内因而比较安全。同位素示踪法是利用放射性或稳定性同位素标记的元素或化合物参加到化学或生物研究过程中跟踪某个过程的方法。其特点是:①灵敏度高。一般最精确的化学分析很少能测到10-12克,同位素示踪则可检测出10-14~10-18克的微量物质,这对于动、植物体内痕量元素和激素代谢等的研究十分重要。②操作手续简便。只测定试验样品中的放射性强度,不受其他非放射性元素的干扰,因而可以减少繁杂的提取、纯化、分离等化学分析的操作程序。③可区分试验体系中原有的分子和新加入的分子。如用放射性同位素32P示踪方法研究作物对磷的吸收,可以区分出植株中来自土壤和来自肥料的磷。④可以在正常生理条件下进行试验。如用常规方法研究家畜营养代谢往往要引入比正常生理剂量大得多的药理剂量,而使用同位素示踪剂只要微量就可达到目的,因而可避免对正常生理的干扰和破坏。⑤可以准确定位。用放射性自显影术可以确定放射性示踪剂在组织或器官中的位置和分布;而用显微自显影或电镜自显影,则可进行细胞甚至亚细胞水平的定位观察。同位素示踪法在农业中的应用可分为下列两类。放射性同位素示踪又分为3种类型:①利用同一元素的同位素化学性质相同的示踪试验。这类试验所采用的放射性示踪剂和研究对象二者的化学性质以及试验过程中所经历的化学和生物学反应都相同,如用放射性32P标记的过磷酸钙去追踪作物对磷肥吸收的研究就属此类。②利用放射性示踪剂和被研究对象完全物理混合的试验。二者的重量比在整个试验过程中保持不变。如在农药溶液中加入一定量可溶解于农药的短半衰期的放射性同位素,可用以测定飞机喷洒农药的分布范围。③利用放射性作标记的示踪试验。这类试验要求示踪剂在试验过程中牢固地和被追踪物结合在一起。如将放射性131I或60Co附加(通过喂食、喷洒、沾着等方法)在昆虫身上后释放,再在不同的时间和地点捕捉昆虫并检测其放射性,便可得知其迁飞的速度和分布范围。稳定性同位素示踪稳定性同位素是天然存在的不能探测到放射性的同位素。用以作为农业科学研究的示踪剂,具有下列优点:①没有放射性,适用于生物有机体的研究;②标记物的合成和处理较简单,同位素不会衰变,实验不受时间限制;③农业科学研究中最常用的稳定性同位素如13C、15N、18O等都无毒性,且是有机体的组成元素,氮和氧没有较长半衰期的放射性同位素,因而15N、18O是农学研究中唯一适用的示踪元素;④用质谱技术测定“同位素比值”,要比放射性