电分课设-PQ分解法计算潮流及其仿真结果

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

摘要潮流计算是研究电力系统稳态运行情况的一种基本电气计算,通过潮流计算可以就给定的运行条件和网路结构确定整个系统的运行状态,确定各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等参数。常用的潮流计算方法有牛顿-拉弗逊法、P-Q分解法、直流潮流法、并行处理法等。P-Q分解法速度快,计算效率高,实用性强,Matlab编程与C语言相似,而且极其适合计算矩阵。因此,本设计采用P-Q分解法并使用Matlab软件编程进行潮流计算,获得简单电力系统各节点电压,功率分布,功率损耗等参数。关键词:潮流计算,P-Q分解法,Matlab编程计算1潮流计算背景1.1潮流计算意义电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。潮流计算几点意义如下:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。1.2潮流计算方法要求电网潮流计算方法的要求是:(1)具有可靠的收敛性,对不同的网络结构及不同的运行条件都能收敛。(2)计算速度快。(3)使用灵活方便,参数调整容易,能满足工程上的各种要求。(4)内存占容量少等[6]。由于配电网中的收敛问题比较突出,因此对配电网潮流算法进行评价时,首先看它能否可靠收敛,然后在此基础上可对计算速度提出进一步的要求,即尽可能地提高计算速度。2牛顿-拉弗逊法原理首先对一般的牛顿—拉夫逊法作一简单的说明。已知一个变量X函数为:0)(Xf到此方程时,由适当的近似值)0(X出发,根据:,......)2,1()()()()()()1(nXfXfXXnnnn反复进行计算,当)(nX满足适当的收敛条件就是上面方程的根。这样的方法就是所谓的牛顿—拉夫逊法。这一方法还可以做下面的解释,设第n次迭代得到的解语真值之差,即)(nX的误差为时,则:0)()(nXf把)()(nXf在)(nX附近对用泰勒级数展开0......)(!2)()()()(2)()()(nnnnXfXfXfXf上式省略去2以后部分0)()()()(nnXfXf)(nX的误差可以近似由上式计算出来。)()()()(nnXfXf比较两式,可以看出牛顿—拉夫逊法的休整量和)(nX的误差的一次项相等。用同样的方法考虑,给出n个变量的n个方程:0),,,(0),,,(0),,,(21212211nnnnXXXfXXXfXXXf对其近似解1X得修正量1X可以通过解下边的方程来确定:nnnnnnnnnnnXXXxfxfxfxfxfxfxfxfxfXXXfXXXfXXXf2121222121211121212211),,,(),,,(),,,(式中nnxf是对于nXXX,,,21的值。这一矩阵称为雅可比矩阵。按上述得到的修正向量nXXX,,,21后,得到如下关系nnnXXX这比nXXX,,,21更接近真实值。这一步在收敛到希望的值以前重复进行,一般要反复计算满足1112121111,,,maxnnnnnnnnXXXXXX为预先规定的小正数,1nnX是第n次迭代nX的近似值。牛顿拉弗逊法计算步骤如下:(1)给这各节点电压初始值)0()0(,fe;(2)将以上电压初始值代入公式,求修正方程的常数项向量)0(2)0()0()(,,VQP;(3)将电压初始值在带入上述公式,求出修正方程中系数矩阵的各元素。(4)解修正方程式)0()0(,fe;(5)修正各节点电压)0()0()1(eee,)0()0()1(fff;(6)将)1(e,)1(f在带入方程式,求出)1(2)1()1()(,,VQP;(7)检验是否收敛,即)()(,maxkikiQP如果收敛,迭代到此结束,进一步计算各线路潮流和平衡节点功率,并打印输出结果。如果不收敛,转回②进行下次迭代计算,直到收敛为止。计算流程框图如下:开始输入初始值形成节点导纳矩分解各节点初始电压的实部和虚部迭代次数K=0求PQ节点的,,求PV节点的,置节点号雅克比矩阵是否形成,in求得雅克比矩阵各元素增大节点号i=i+1把雅克比矩阵单位求解修正方程,得,求解最大修正量,是否收敛回带各电压新值,计算电压及相角,节电功率及支路损耗等参数输出否是否是3P-Q分解法原理电力系统中常用的PQ分解法派生于以极坐标表示的牛顿—拉弗逊法,其基本思想是把节点功率表示为电压向量的极坐标形式,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,把有功和无功分开进行迭代其主要特点是以一个(n-1)阶和一个m阶不变的、对称的系数矩阵代替原来的(n+m-2)阶变化的、不对称的系数矩阵M,以此提高计算速度,降低对计算机贮存容量的要求。牛顿法潮流程序的核心是求解修正方程式,当节点功率方程式采取极坐标系统时,修正方程式为:VVLNJHQP/或展开为:VVLJQVVNHP//电力系统中有功功率主要与各节点电压向量的角度有关,无功功率则主要受各节点电压幅值的影响。大量运算经验也告诉我们,矩阵N及J中各元素的数值相对是很小的,因此对牛顿法的第一步简化就是把有功功率和无功功率分开来进行迭代,即将上式化简为:VVLQHP/把2n阶的线性方程组变成了二个n阶的线性方程组,计算量和内存方面都有改善。一般线路两端电压的相角差是不大的(通常不超过10~20度),因此可以认为:此外,与系统各节点无功功率相应的导纳必定远远小于该节点自导纳的虚部,即:因此系数矩阵中的元素表达式可以化简为:这样,系数矩阵可表示为:cos1sinijijijijGBLiB2iiiiQVB22iiiiiijijijiiiiiijijijHVBHVVBLVBLVVB(10)将它代入原系数矩阵中,利用乘法结合率,将修正方程式变为:将以上两式的左右两侧用以下矩阵左乘=得到2111121211222212122221122nnnnnnnnnnnVBVVBVVBVVBVVBVBHLVVBVVBVB111211122122120000nnnnnnnnBBBVVBBBHLVVBBB1111111212222221221200nnnnnnnnnnVPVBBBVPBVBBVPVBBB11111121222221221200nnnnnnnnnVQVBBBVQBVBBVQVBBB11200nVVV121/1/1/00nVVV11221111121222212212nnPVnPnVPnnnnnnVVBBBBVBBVBBB(14)以上两式就是P-Q分解法的修正方程式,其中系数矩阵是系统导纳矩阵的虚部,而且在迭代过程中维持不变。它们与功率误差方程式构成了P-Q分解法基本计算公式。)3,2,1(sincos1niBGVVPPijijijijnjjjiisi)3,2,1(cossin1niBGVVQQijijijijnjjjiisiP-Q分解法计算步骤如下:1)形成系数矩阵BB、,并求其逆矩阵。2)设各节点电压的初值为(0)i(i=1,2,…,n,i≠s)和(0)iU(i=1,2,…,m,i≠s)。3)通过有功功率的不平衡方程计算有功功率的不平衡量(0)iP,从而求出(0)i(0)iUP(i=1,2,…,n,i≠s)。4)解修正方程式,求各节点电压相位角的变量(0)i(i=1,2,…,n,i≠s)5)求各节点电压相位角的新值(0)i(0)i(1)i(i=1,2,…,n,i≠s)。6)通过无功功率的不平衡方程计算无功功率的不平衡量(0)iQ,从而求出(0)i(0)iUQ(i=1,2,…,m,i≠s)。7)解修正方程式,求各节点电压大小的变量(0)iU(i=1,2,…,m,i≠s)。8)求各节点电压大小的新值(0)i(0)i(1)iUUU(i=1,2,…,m,i≠s)。9)若不收敛,运用各节点电压的新值自第三步开始进入下一次迭代。若收敛,计算平衡节点功率和线路功率并输出。本设计采用P-Q分解法,编写程序流程框图如下:112211112122212212nnQVnQnVQnnnnnVVBBBBVBBVBBB输入原始数据建立节点导纳矩阵形成矩阵和置迭代次数有功与无功的迭代偏差均大于计算无功不平衡量计算相角修正量,求得计算有功不平衡量计算电压修正量,求得计算平衡节点功率以及全部线路功率有功迭代偏差小于无功迭代偏差小于无功迭代偏差是否小于有功迭代偏差是否小于输出数据是否是是否否开始4P-Q分解法源程序n=4;%节点数为4nl=4;%支路数为4isb=1;%平衡母线节点编号为1pr=0.0001;%精度为0.0001B1=[130.02+0.08i010;140.04+0.12i010;240.05+0.14i010;340.04+0.12i010];B2=[0-0.6-0.25i1.0002;0-0.8-0.35i1.0002;0.400.950.9503;001.01.001];X=[10;20;30;40];na=2;%PQ节点数Y=zeros(n);YI=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);O=zeros(1,n);fori=1:nifX(i,2)~=0;p=X(i,1);Y(p,p)=1./X(i,2);endendfori=1:nlifB1(i,6)==0p=B1(i,1);q=B1(i,2);elsep=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5));YI(p,q)=YI(p,q)-1./B1(i,3);Y(q,p)=Y(p,q);YI(q,p)=YI(p,q);Y

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功