基于BP神经网络的车型识别 外文翻译

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、外文资料LicensePlateRecognitionBasedOnPriorKnowledgeAbstract-Inthispaper,anewalgorithmbasedonimprovedBP(backpropagation)neuralnetworkforChinesevehiclelicenseplaterecognition(LPR)isdescribed.Theproposedapproachprovidesasolutionforthevehiclelicenseplates(VLP)whichweredegradedseverely.Whatitremarkablydiffersfromthetraditionalmethodsistheapplicationofpriorknowledgeoflicenseplatetotheprocedureoflocation,segmentationandrecognition.Colorcollocationisusedtolocatethelicenseplateintheimage.Dimensionsofeachcharacterareconstant,whichisusedtosegmentthecharacterofVLPs.TheLayoutoftheChineseVLPisanimportantfeature,whichisusedtoconstructaclassifierforrecognizing.Theexperimentalresultsshowthattheimprovedalgorithmiseffectiveundertheconditionthatthelicenseplatesweredegradedseverely.IndexTerms-Licenseplaterecognition,priorknowledge,vehiclelicenseplates,neuralnetwork.I.INTRODUCTIONVehicleLicense-Plate(VLP)recognitionisaveryinterestingbutdifficultproblem.Itisimportantinanumberofapplicationssuchasweight-and-speed-limit,redtrafficinfringement,roadsurveysandparksecurity[1].VLPrecognitionsystemconsistsoftheplatelocation,thecharacterssegmentation,andthecharactersrecognition.Thesetasksbecomemoresophisticatedwhendealingwithplateimagestakeninvariousinclinedanglesorundervariouslighting,weatherconditionandcleanlinessoftheplate.Becausethisproblemisusuallyusedinreal-timesystems,itrequiresnotonlyaccuracybutalsofastprocessing.MostexistingVLPrecognitionmethods[2],[3],[4],[5]reducethecomplexityandincreasetherecognitionratebyusingsomespecificfeaturesoflocalVLPsandestablishingsomeconstrainsontheposition,distancefromthecameratovehicles,andtheinclinedangles.Inaddition,neuralnetworkwasusedtoincreasetherecognitionrate[6],[7]butthetraditionalrecognitionmethodsseldomconsiderthepriorknowledgeofthelocalVLPs.Inthispaper,weproposedanewimprovedlearningmethodofBPalgorithmbasedonspecificfeaturesofChineseVLPs.TheproposedalgorithmovercomesthelowspeedconvergenceofBPneuralnetwork[8]andremarkableincreasestherecognitionrateespeciallyundertheconditionthatthelicenseplateimagesweredegradeseverely.II.SPECIFICFEATURESOFCHINESEVLPSA.DimensionsAccordingtotheguidelineforvehicleinspection[9],alllicenseplatesmustberectangularandhavethedimensionsandhaveall7characterswritteninasingleline.Underpracticalenvironments,thedistancefromthecameratovehiclesandtheinclinedanglesareconstant,soallcharactersofthelicenseplatehaveafixedwidth,andthedistancebetweenthemediumaxesoftwoadjoiningcharactersisfixedandtheratiobetweenwidthandheightisnearlyconstant.Thosefeaturescanbeusedtolocatetheplateandsegmenttheindividualcharacter.B.ColorcollocationoftheplateTherearefourkindsofcolorcollocationfortheChinesevehiclelicenseplate.ThesecolorcollocationsareshownintableI.TABLEICategoryoflicenseplateColorcollocationsmallhorsepowerplatebluebackgroundandwhitecharactersmotortruckplateyellowbackgroundandblackcharactersmilitaryvehicleandpolicewagonplateblackbackgroundandthewhitecharactersembassyvehicleplatewhitebackgroundandblackcharactersMoreover,militaryvehicleandpolicewagonplatescontainaredcharacterwhichbelongstoaspecificcharacterset.Thisfeaturecanbeusedtoimprovetherecognitionrate.C.LayoutoftheChineseVLPSThecriterionofthevehiclelicenseplatedefinesthecharacterslayoutofChineselicenseplate.AllstandardlicenseplatescontainChinesecharacters,numbersandletterswhichareshowninFig.1.ThefirstoneisaChinesecharacterwhichisanabbreviationofChineseprovinces.ThesecondoneisaletterrangingfromAtoZexcepttheletterI.Thethirdandfourthonesarelettersornumbers.Thefifthtoseventhonesarenumbersrangingfrom0to9only.Howeverthefirstortheseventhonesmayberedcharactersinspecialplates(asshowninFig.1).Aftersegmentationprocesstheindividualcharacterisextracted.Takingadvantageofthelayoutandcolorcollocationpriorknowledge,theindividualcharacterwillenteroneoftheclasses:abbreviationsofChineseprovincesset,lettersset,lettersornumbersset,numberset,specialcharactersset.(a)Typicallayout(b)SpecialcharacterFig.1ThelayoutoftheChineselicenseplateIII.THEPROPOSEDALGORITHMThisalgorithmconsistsoffourmodules:VLPlocation,charactersegmentation,characterclassificationandcharacterrecognition.ThemainstepsoftheflowchartofLPRsystemareshowninFig.2.Firstlythelicenseplateislocatedinaninputimageandcharactersaresegmented.Theneveryindividualcharacterimageenterstheclassifiertodecidewhichclassitbelongsto,andfinallytheBPnetworkdecideswhichcharacterthecharacterimagerepresents.Fig.2TheflowchartofLPRsystemImageacquisitionPlatelocationCharacterssegmentationsegmentationclassifierChinesecharacterLetterLetterornumberNumberSpecialcharacterCharactersrecognition辽BB092警ChinesecharactercharacterLetterLetterornumberSpecialredcharacter辽BA9083ChinesecharactercharacterLetterLetterornumberNumberA.Preprocessingthelicenseplate1)VLPLocationThisprocesssufficientlyutilizesthecolorfeaturesuchascolorcollocation,colorcentersanddistributionintheplateregion,whicharedescribedinsectionII.Thesecolorfeaturescanbeusedtoeliminatethedisturbanceofthefakeplate’sregions.TheflowchartoftheplatelocationisshowninFig.3.Fig.3Theflo

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功